Complete the following steps to specify the column of data that you want to analyze.
If you do not know the seasonal length, use or to help you identify the length.
In this worksheet, Sales contains the number of computers that are sold each month.
C1 |
---|
Sales |
195000 |
213330 |
208005 |
249000 |
237040 |
You should not fit a multiplicative model when your data contain negative values. When you have positive and negative data, the multiplicative seasonal indices for the negative data are the inverse of what they are for the positive data. This causes the model to not fit the data.
The weights adjust the amount of smoothing by defining how each component reacts to current conditions. Usually, you want to smooth the data enough to reduce the noise (irregular fluctuations) so that the pattern is more apparent. However, don't smooth the data so much that you lose important details.
Perform the analysis with the default weights first. After you examine the resulting time series plot, you can increase or decrease the weights. Lower weights produce a smoother line, and higher weights produce a less smooth line. Use smaller weights for noisy data so that the smoothed values don't fluctuate with the noise. If you do adjust the weights, adjusting the weight for the level component usually has the best chance of improving the accuracy measures. Changing the other weights usually has a small effect after you adjust the level weight where it should be.
Complete the following steps to generate forecasts for your time series.
If you enter a value, Minitab uses only the data up to that row number for the forecasts. The forecast values differ from the fits because Minitab uses all of the data to calculate the fits.