The table estimates the best fitting regression equation for the model. The regression equation takes the following general form:
Prediction = constant + coefficient(predictor) + ... + coefficient(predictor) + scale (quantile function) or
Yp = β0 + β1x1 + ... + βkxk + σΦ-1(p)
This model might not provide a good fit to the data. To assess model fit, check the assumptions of the model by using the probability plot of the standardized residuals and the Cox-Snell residuals.
Standard Error | 95.0% Normal CI | |||||
---|---|---|---|---|---|---|
Predictor | Coef | Z | P | Lower | Upper | |
Intercept | 6.68731 | 0.193766 | 34.51 | 0.000 | 6.30754 | 7.06709 |
Design | ||||||
Standard | -0.705643 | 0.0725597 | -9.72 | 0.000 | -0.847857 | -0.563428 |
Weight | -0.0565899 | 0.0212396 | -2.66 | 0.008 | -0.0982187 | -0.0149611 |
Shape | 5.79286 | 1.07980 | 4.02001 | 8.34755 |
The estimated model for the new compressor cases is: log(Yp) = 6.8731 – 0.0565899(Weight) + (1.0/5.79286)Φ-1(p)
The estimated model for the standard compressor cases is: log(Yp) = (6.8731 – 0.705643) – 0.0565899(Weight) + (1.0/5.79286)Φ-1(p)