Multiple failure mode analysis for Parametric Distribution Analysis (Right Censoring)

Multiple failure mode analysis – parameter estimates

The parameter estimates define the best-fitting parameter estimates for the distribution that you selected for each failure mode. All other parametric distribution analysis graphs and statistics are based on the distribution. Therefore, to ensure that the results are accurate, the distribution that you select must adequately fit the data.

You cannot determine from the estimated distribution parameters whether the distribution fits the data well. Use the distribution ID plot, probability plot, and goodness-of-fit measures to determine whether the distribution adequately fits the data.

Example output

Parameter Estimates



Standard
Error
95.0% Normal CI
ParameterEstimateLowerUpper
Shape1.976720.2765871.502602.60044
Scale891.92990.8270730.5521088.96

Parameter Estimates



Standard
Error
95.0% Normal CI
ParameterEstimateLowerUpper
Location5.753280.2711715.221796.28476
Scale1.959330.2387201.543112.48780

Interpretation

For the dishwasher data, the engineers selected a Weibull distribution to model spray arm breaks, and a lognormal distribution to model spray arm obstructions. The following parameters define the best-fitting distributions for each failure mode:

Shape = 1.97672 and Scale = 891.929 for spray arm breaks

Location = 5.75328 and Scale = 1.95933 for spray arm obstructions

Multiple failure mode analysis – percentiles

The percentiles indicate the age by which a percentage of the population is expected to fail. Use the percentile values to determine whether your product meets reliability requirements, or to determine which failure modes impact the overall reliability.

Use these values only when the distribution fits the data adequately. If the distribution fits the data poorly, these estimates will be inaccurate. Use the distribution ID plot, probability plot, and goodness-of-fit measures to determine if the distribution adequately fits the data.

Example output

Table of Percentiles



Standard
Error
95.0% Normal CI
PercentPercentileLowerUpper
187.027630.633943.6548173.493
2123.89637.787768.1466225.252
3152.49742.355588.4796262.833
4176.84745.7243106.541293.548
5198.50248.3870123.105320.077
6218.26050.5811138.583343.746
7236.59452.4406153.227365.317
8253.81254.0493167.205385.279
9270.13055.4632180.636403.963
10285.70356.7217193.608421.606
20417.62564.8194308.086566.111
30529.45769.7943408.905685.548
40634.96474.3928504.686798.871
50740.97979.9464599.746915.471
60853.34387.6525697.7361043.65
70979.74699.1411803.4891194.67
801134.71117.529926.2341390.11
901360.10152.0291092.511693.23
911391.24157.4331114.501736.69
921425.26163.4971138.281784.59
931462.89170.3931164.311838.05
941505.19178.3711193.221898.73
951553.77187.8161226.021969.15
961611.28199.3691264.302053.50
971682.59214.2231311.012159.50
981778.36235.0321372.532304.18
991931.34270.1381468.252540.49

Table of Percentiles



Standard
Error
95.0% Normal CI
PercentPercentileLowerUpper
13.304241.785631.145719.52940
25.636792.729802.1817714.5631
37.910503.559153.2751119.1066
410.20744.337094.4385723.4741
512.55955.088495.6768227.7867
614.98385.826466.9925032.1079
717.49166.559168.3876536.4772
820.09137.292309.8640840.9221
922.78968.0302211.423645.4641
1025.59268.7764613.068150.1206
2060.598417.286334.6455105.993
30112.82229.622667.4371188.749
40191.88449.8160115.359319.171
50315.22285.4790185.266536.337
60517.841152.725290.505923.079
70880.729291.401460.4801684.51
801639.73627.451774.5633471.28
903882.581807.191559.269667.69
914360.122080.971710.9711111.0
924945.692424.601892.0412927.8
935680.722866.842112.6915274.7
946631.503454.602388.8518409.2
957911.584269.922747.0422785.7
969734.615470.913235.4729288.6
9712561.27407.953953.9839904.9
9817628.011054.75157.0860256.0
9930072.120656.87824.62115575

Interpretation

For the dishwasher data, based on the distributions fitted to each failure mode, the engineers conclude the following:
  • 1% of the spray arms fail due to breakage by 87.0276 cycles
  • 1% of the spray arms fail due to obstruction by 3.30424 cycles

Overall, by 3.30048 cycles, 1% of the spray arms will fail. For the greatest improvement in reliability, the engineers should focus improvement efforts on minimizing spray arm obstructions.