Multiple failure mode analysis for Parametric Distribution Analysis (Arbitrary Censoring)

Multiple failure mode analysis – parameter estimates

The parameter estimates define the best-fitting parameter estimates for the distribution that you selected for each failure mode. All other parametric distribution analysis graphs and statistics are based on the selected distribution. Therefore, to ensure accurate results, the distribution that you select must adequately fit the data.

You cannot determine from the estimated distribution parameters whether the distribution that you selected fits the data well. Use the distribution ID plot, probability plot, and goodness-of-fit measures to determine whether the distribution adequately fits the data.

Example output

Variable Start: Start  End: End
Frequency: Freq
Failure Mode: Failure = Bearing

Parameter Estimates



Standard
Error
95.0% Normal CI
ParameterEstimateLowerUpper
Location11.42890.066198611.299111.5586
Scale0.3868790.05796570.2884300.518932
Variable Start: Start  End: End
Frequency: Freq
Failure Mode: Failure = Gasket

Parameter Estimates



Standard
Error
95.0% Normal CI
ParameterEstimateLowerUpper
Location11.63180.15030611.337211.9264
Scale0.8053580.1399710.5728631.13221

Interpretation

For the water pump data, the engineers selected a lognormal distribution to model bearing failures and a lognormal distribution to model gasket failures. The parameters that define the best-fitting distribution for each failure mode are as follows:
  • Location = 11.4289 and Scale = 0.386879 for bearing failures
  • Location = 11.6318 and Scale = 0.805358 for gasket failures

Multiple failure mode analysis – percentiles

The percentiles indicate the age by which a percentage of the population is expected to fail. Use the percentile values to determine whether your product meets reliability requirements, or to determine which failure modes impact the overall reliability.

Use these values only when the distribution fits the data adequately. If the distribution fits the data poorly, these estimates will be inaccurate. Use the distribution ID plot, probability plot, and goodness-of-fit measures to determine whether the distribution adequately fits the data.

Example output

Variable Start: Start  End: End
Frequency: Freq
Failure Mode: Failure = Bearing

Table of Percentiles



Standard
Error
95.0% Normal CI
PercentPercentileLowerUpper
137378.24186.5530010.946554.0
241535.64092.3734241.650383.3
344409.94013.1637201.553015.1
446702.63946.0139575.055113.9
548654.43888.5341600.056905.2
650380.03839.1543390.358495.5
751943.23796.8345010.059944.3
853383.93760.8546499.161288.2
954728.93730.7147884.362552.0
1055997.03706.0349184.763752.8
2066386.73718.1359485.174089.2
3075055.24143.2167358.583631.3
4083353.34935.8874219.593611.2
5091937.06086.1080749.9104674
601014057648.6687468.9117560
701126169795.1394965.1133547
8012732112976.5104266155473
9015094418744.6118335192540
9115444119655.9120346198197
9215833220685.5122564204539
9316272421866.6125046211756
9416777323248.6127871220128
9517372324908.8131163230094
9618098426979.2135130242398
9719032729711.7140159258452
9820349833685.8147115281490
9922613240821.4158746322123
Variable Start: Start  End: End
Frequency: Freq
Failure Mode: Failure = Gasket

Table of Percentiles



Standard
Error
95.0% Normal CI
PercentPercentileLowerUpper
117295.94302.9510621.328164.9
221542.14636.3114128.332846.1
324761.74823.6916903.036274.2
427497.14951.3119320.339134.5
529943.65047.8721518.341667.6
632196.65126.8423565.143989.8
734311.25195.8325499.746167.4
836322.05259.6627347.148242.5
938253.05321.6629123.950243.8
1040121.15384.3330841.852192.2
2057180.06349.0445997.171081.8
3073823.88397.1559071.292260.7
4091833.411825.771349.1118199
5011261916927.383882.5151200
6013810924362.197740.3195152
7017180235634.2114413257976
8022180954607.2136906359366
9031611995637.2174716571965
91331557102872180491609060
92349183111286186970652131
93369648121249194350703061
94393925133323202921764718
95423565148416213139841741
96461250168122225778942306
975122051956072423121082708
985887582385272661241302535
997333003241053083661743799
Variable Start: Start  End: End
Frequency: Freq
Failure Mode: Failure = Bearing, Gasket

Table of Percentiles



95.0% Normal CI
PercentPercentileLowerUpper
117291.810624.027909.5
221511.514143.532140.0
324665.916938.535023.7
427287.419376.337286.9
529566.821584.139192.7
631599.223619.640869.3
733441.625513.642388.0
835132.027285.143791.9
936698.128948.145108.3
1038160.430513.646355.3
2049496.042607.756673.6
3058169.351495.765176.2
4066025.759190.373260.0
5073846.866445.581745.1
6082224.873737.491377.7
7091908.081606.5103179
8010433191022.7119199
90123832104763145869
91126682106692149894
92129844108814154393
93133401111178159496
94137476113860165393
95142259116972172382
96148072120708180967
97155514125421192100
98165939131908207946
99183695142684235557

Interpretation

The table of percentiles for the water pump data indicates the following:
  • 1% of the pumps fail because of bearing failures by 37378.2 miles
  • 1% of the pumps fail because of gasket failures by 17295.9 miles

Overall, by 17291.8 miles, 1% of the water pumps will fail. For the greatest improvement in water pump reliability, the engineers should focus on minimizing gasket failures.