Kaplan-Meier estimation method for Nonparametric Distribution Analysis (Right Censoring)

Characteristics of Variable – Kaplan-Meier estimation method

The MTTF (mean time to failure) and the median are measures of the center of the distribution. The IQR is a measure of the spread of the distribution.

Example output

Variable: Temp80

Censoring

Censoring InformationCount
Uncensored value37
Right censored value13
Censoring value: Cens80 = 0
Nonparametric Estimates

Characteristics of Variable


Standard
Error
95.0% Normal CI



Mean(MTTF)LowerUpperQ1MedianQ3IQR
63.71233.8345356.196871.22794855**

Interpretation

The characteristics of the variable are shown for the engine windings that are tested at 80° C.

The MTTF (63.7123) is a sensitive statistic because outliers and the tails in a skewed distribution significantly affect its values.

The median (55) and the IQR are resistant statistics because the tails in a skewed distribution and outliers do not significantly affect their values.
Note

In this example, due to censoring, there is not sufficient failure data to calculate where 75% fail or 25% survive (Q3). Therefore, Minitab displays a missing value * for Q3 and IQR.

Kaplan-Meier Estimates – Kaplan-Meier estimation method

The survival probabilities indicate the probability that the product survives until a particular time. Use these values to determine whether your product meets reliability requirements or to compare the reliability of two or more designs of a product.

Nonparametric estimates do not depend on any particular distribution and therefore are good to use when no distribution adequately fits the data.

Example output

Variable: Temp80

Censoring

Censoring InformationCount
Uncensored value37
Right censored value13
Censoring value: Cens80 = 0
Nonparametric Estimates

Characteristics of Variable


Standard
Error
95.0% Normal CI



Mean(MTTF)LowerUpperQ1MedianQ3IQR
63.71233.8345356.196871.22794855**

Kaplan-Meier Estimates


Number
at Risk
Number
Failed
Survival
Probability
Standard
Error
95.0% Normal CI
TimeLowerUpper
235010.9800000.01979900.9411951.00000
244910.9600000.02771280.9056841.00000
274820.9200000.03836670.8448030.99520
314610.9000000.04242640.8168460.98315
344510.8800000.04595650.7899270.97007
354410.8600000.04907140.7638220.95618
374310.8400000.05184590.7383840.94162
404210.8200000.05433230.7135110.92649
414110.8000000.05656850.6891280.91087
454010.7800000.05858330.6651790.89482
463910.7600000.06039870.6416210.87838
483830.7000000.06480740.5729800.82702
493510.6800000.06596970.5507020.80930
503410.6600000.06699250.5286970.79130
513340.5800000.06979970.4431950.71680
522910.5600000.07019970.4224110.69759
532810.5400000.07048400.4018540.67815
542710.5200000.07065410.3815210.65848
552610.5000000.07071070.3614100.63859
562510.4800000.07065410.3415210.61848
582420.4400000.07019970.3024110.57759
592210.4200000.06979970.2831950.55680
602110.4000000.06928200.2642100.53579
612010.3800000.06864400.2454600.51454
621910.3600000.06788230.2269530.49305
641810.3400000.06699250.2086970.47130
661710.3200000.06596970.1907020.44930
671620.2800000.06349800.1555460.40445
741310.2584620.06215920.1366320.38029

Empirical Hazard Function

TimeHazard
Estimates
230.0200000
240.0204082
270.0212766
310.0217391
340.0222222
350.0227273
370.0232558
400.0238095
410.0243902
450.0250000
460.0256410
480.0277778
490.0285714
500.0294118
510.0333333
520.0344828
530.0357143
540.0370370
550.0384615
560.0400000
580.0434783
590.0454545
600.0476190
610.0500000
620.0526316
640.0555556
660.0588235
670.0666667
740.0769231

Interpretation

For the engine windings tested at 80° C, 0.40, or 40%, of the windings survived for at least 60.0 hours.

Empirical hazard function – Kaplan-Meier estimation method

The hazard function provides a measure of the likelihood of failure as a function of how long a unit has survived (the instantaneous failure rate at a particular time, t).

The empirical hazard function always results in an increasing function; therefore, the likelihood of failure is assumed to increase as a function of age.

Example output

Variable: Temp80

Censoring

Censoring InformationCount
Uncensored value37
Right censored value13
Censoring value: Cens80 = 0
Nonparametric Estimates

Characteristics of Variable


Standard
Error
95.0% Normal CI



Mean(MTTF)LowerUpperQ1MedianQ3IQR
63.71233.8345356.196871.22794855**

Kaplan-Meier Estimates


Number
at Risk
Number
Failed
Survival
Probability
Standard
Error
95.0% Normal CI
TimeLowerUpper
235010.9800000.01979900.9411951.00000
244910.9600000.02771280.9056841.00000
274820.9200000.03836670.8448030.99520
314610.9000000.04242640.8168460.98315
344510.8800000.04595650.7899270.97007
354410.8600000.04907140.7638220.95618
374310.8400000.05184590.7383840.94162
404210.8200000.05433230.7135110.92649
414110.8000000.05656850.6891280.91087
454010.7800000.05858330.6651790.89482
463910.7600000.06039870.6416210.87838
483830.7000000.06480740.5729800.82702
493510.6800000.06596970.5507020.80930
503410.6600000.06699250.5286970.79130
513340.5800000.06979970.4431950.71680
522910.5600000.07019970.4224110.69759
532810.5400000.07048400.4018540.67815
542710.5200000.07065410.3815210.65848
552610.5000000.07071070.3614100.63859
562510.4800000.07065410.3415210.61848
582420.4400000.07019970.3024110.57759
592210.4200000.06979970.2831950.55680
602110.4000000.06928200.2642100.53579
612010.3800000.06864400.2454600.51454
621910.3600000.06788230.2269530.49305
641810.3400000.06699250.2086970.47130
661710.3200000.06596970.1907020.44930
671620.2800000.06349800.1555460.40445
741310.2584620.06215920.1366320.38029

Empirical Hazard Function

TimeHazard
Estimates
230.0200000
240.0204082
270.0212766
310.0217391
340.0222222
350.0227273
370.0232558
400.0238095
410.0243902
450.0250000
460.0256410
480.0277778
490.0285714
500.0294118
510.0333333
520.0344828
530.0357143
540.0370370
550.0384615
560.0400000
580.0434783
590.0454545
600.0476190
610.0500000
620.0526316
640.0555556
660.0588235
670.0666667
740.0769231

Interpretation

For the engine windings tested at 80° C, the likelihood of failure is 2 (0.0500000/0.0250000) times greater after the windings run for 61 hours than after the windings run for 45 hours.

Comparison of survival curves – Kaplan-Meier estimation method

Use the log-rank and Wilcoxon tests to compare the survival curves of two or more data sets. Each test detects different types of differences between the survival curves. Therefore, use both tests to determine whether the survival curves are equal.

The log-rank test compares the actual and expected number of failures between the survival curves at each failure time.

The Wilcoxon test is a log-rank test that is weighted by the number of items that still survive at each point in time. Therefore, the Wilcoxon test weights early failure times more heavily.

Example output

Test Statistics

MethodChi-SquareDFP-Value
Log-Rank7.715210.005
Wilcoxon13.132610.000

Interpretation

For the engine windings data, the test is to determine whether the survival curves for the engine windings running at 80° C and 100° C are the same. Because the p-value for both tests is less than an α-value of 0.05, the engineer concludes that a significant difference exists between the survival curves.