Example of Nonparametric Distribution Analysis (Right Censoring)

A reliability engineer studies the failure rates of engine windings of turbine assemblies to determine the times at which the windings fail. At high temperatures, the windings might decompose too fast.

The engineer records failure times for the engine windings at 80° C and 100° C. However, some of the units must be removed from the test before they fail. Therefore, the data are right censored. The engineer uses Nonparametric Distribution Analysis (Right Censoring) to determine the following:
  • The times at which various percentages of the windings fail.
  • The percentage of windings that will survive past various times.
  • The survival function for the engine windings (as shown on a survival plot).
  • Whether the survival curves at the two temperatures are significantly different.
  1. Open the sample data, EngineWindingReliability.MTW.
  2. Choose Stat > Reliability/Survival > Distribution Analysis (Right Censoring) > Nonparametric Distribution Analysis.
  3. In Variables, enter Temp80 Temp100.
  4. Click Censor. Under Use censoring columns, enter Cens80 Cens100.
  5. In Censoring value, type 0. Click OK.
  6. Click Graphs. Select Survival plot.
  7. Click OK in each dialog box.

Interpret the results

The estimated median failure time for Temp80 is 55 hours and the estimated median failure time for Temp100 is 38 hours. Therefore, the increase in temperature decreases the median failure time by approximately 17 hours.

Minitab displays the survival estimates in the Kaplan-Meier Estimates table. At 80° C, 0.9000 (90%) of the windings survive past 31 hours. At 100° C, 0.9000 (90%) of the windings survive past 14 hours.

In the Test Statistics table, a p-value < α (usually, α = 0.05) indicates that the survival curves are significantly different. In this case, the both p-values (0.005 and 0.000) are less than α, which suggests that a change of 20° C has an effect on the breakdown of engine windings.

80° C
Variable: Temp80

Censoring

Censoring InformationCount
Uncensored value37
Right censored value13
Censoring value: Cens80 = 0
Nonparametric Estimates

Characteristics of Variable


Standard
Error
95.0% Normal CI



Mean(MTTF)LowerUpperQ1MedianQ3IQR
63.71233.8345356.196871.22794855**

Kaplan-Meier Estimates


Number
at Risk
Number
Failed
Survival
Probability
Standard
Error
95.0% Normal CI
TimeLowerUpper
235010.9800000.01979900.9411951.00000
244910.9600000.02771280.9056841.00000
274820.9200000.03836670.8448030.99520
314610.9000000.04242640.8168460.98315
344510.8800000.04595650.7899270.97007
354410.8600000.04907140.7638220.95618
374310.8400000.05184590.7383840.94162
404210.8200000.05433230.7135110.92649
414110.8000000.05656850.6891280.91087
454010.7800000.05858330.6651790.89482
463910.7600000.06039870.6416210.87838
483830.7000000.06480740.5729800.82702
493510.6800000.06596970.5507020.80930
503410.6600000.06699250.5286970.79130
513340.5800000.06979970.4431950.71680
522910.5600000.07019970.4224110.69759
532810.5400000.07048400.4018540.67815
542710.5200000.07065410.3815210.65848
552610.5000000.07071070.3614100.63859
562510.4800000.07065410.3415210.61848
582420.4400000.07019970.3024110.57759
592210.4200000.06979970.2831950.55680
602110.4000000.06928200.2642100.53579
612010.3800000.06864400.2454600.51454
621910.3600000.06788230.2269530.49305
641810.3400000.06699250.2086970.47130
661710.3200000.06596970.1907020.44930
671620.2800000.06349800.1555460.40445
741310.2584620.06215920.1366320.38029
100° C
Variable: Temp100

Censoring

Censoring InformationCount
Uncensored value34
Right censored value6
Censoring value: Cens100 = 0
Nonparametric Estimates

Characteristics of Variable


Standard
Error
95.0% Normal CI



Mean(MTTF)LowerUpperQ1MedianQ3IQR
44.78134.4336636.091453.471124385430

Kaplan-Meier Estimates


Number
at Risk
Number
Failed
Survival
Probability
Standard
Error
95.0% Normal CI
TimeLowerUpper
64010.975000.02468550.9266171.00000
103910.950000.03446010.8824591.00000
113810.925000.04164580.8433761.00000
143710.900000.04743420.8070310.99297
163610.875000.05229130.7725110.97749
183530.800000.06324560.6760410.92396
223210.775000.06602560.6455920.90441
243110.750000.06846530.6158100.88419
253010.725000.07060010.5866260.86337
272910.700000.07245690.5579870.84201
292810.675000.07405660.5298520.82015
302710.650000.07541550.5021880.79781
322610.625000.07654660.4749720.77503
352510.600000.07745970.4481820.75182
362420.550000.07866070.3958280.70417
372210.525000.07895810.3702450.67975
382120.475000.07895810.3202450.62975
391910.450000.07866070.2958280.60417
401810.425000.07816250.2718040.57820
451720.375000.07654660.2249720.52503
461520.325000.07405660.1798520.47015
471310.300000.07245690.1579870.44201
481210.275000.07060010.1366260.41337
541110.250000.06846530.1158100.38419
68810.218750.06665850.0881020.34940
69710.187500.06404340.0619770.31302
72610.156250.06051540.0376420.27486
76510.125000.05590170.0154350.23457
Comparison of Survival Curves

Test Statistics

MethodChi-SquareDFP-Value
Log-Rank7.715210.005
Wilcoxon13.132610.000