A regression coefficient describes the size and direction of the relationship between a predictor and the risk score. Coefficients are the numbers by which the values of the term are multiplied in a regression equation.
Use the coefficient to determine whether a change in a predictor variable makes the event more likely or less likely. Generally, positive coefficients make the event more likely and negative coefficients make the event less likely. An estimated coefficient near 0 implies that the effect of the predictor is small. For a categorical predictors, the interpretation depends on the coding.
The standard error of the coefficient estimates the variability between coefficient estimates that you would obtain if you took samples from the same population again and again. The calculation assumes that the sample size and the coefficients to estimate would remain the same if you sampled again and again.
Use the standard error of the coefficient to measure the precision of the estimate of the coefficient. The smaller the standard error, the more precise the estimate.
These confidence intervals (CI) are ranges of values that are likely to contain the true value of the coefficient for each term in the model. The calculation of the confidence intervals uses the normal distribution. The confidence interval is accurate if the sample size is large enough that the distribution of the sample coefficient follows a normal distribution.
Because samples are random, two samples from a population are unlikely to yield identical confidence intervals. However, if you take many random samples, a certain percentage of the resulting confidence intervals contain the unknown population parameter. The percentage of these confidence intervals that contain the parameter is the confidence level of the interval.
Use the confidence interval to assess the estimate of the population coefficient for each term in the model.
For example, with a 95% confidence level, you can be 95% confident that the confidence interval contains the value of the coefficient for the population. The confidence interval helps you assess the practical significance of your results. Use your specialized knowledge to determine whether the confidence interval includes values that have practical significance for your situation. If the interval is too wide to be useful, consider increasing your sample size.
The Z-value is a test statistic that measures the ratio between the coefficient and its standard error.
Minitab uses the Z-value to calculate the p-value, which you use to make a decision about the statistical significance of the terms and the model. The test is accurate when the sample size is large enough that the distribution of the sample coefficients follows a normal distribution.
A Z-value that is sufficiently far from 0 indicates that the coefficient estimate is both large and precise enough to be statistically different from 0. Conversely, a Z-value that is close to 0 indicates that the coefficient estimate is too small or too imprecise to be certain that the term has an effect on the risk score.
The p-value is a probability that measures the evidence against the null hypothesis. Lower probabilities provide stronger evidence against the null hypothesis.