The normal probability plot of the residuals displays the residuals versus their expected values when the distribution is normal.
Use the normal probability plot of the residuals to verify the assumption that the residuals are normally distributed. The normal probability plot of the residuals should approximately follow a straight line.
If you see a nonnormal pattern, use the other residual plots to check for other problems with the model, such as missing terms or a time order effect. If the residuals do not follow a normal distribution, the confidence intervals and pvalues can be inaccurate.
The residuals versus fits graph plots the residuals on the yaxis and the fitted values on the xaxis.
Use the residuals versus fits plot to verify the assumption that the residuals are randomly distributed and have constant variance. Ideally, the points should fall randomly on both sides of 0, with no recognizable patterns in the points.
Pattern  What the pattern may indicate 

Fanning or uneven spreading of residuals across fitted values  Nonconstant variance 
Curvilinear  A missing higherorder term 
A point that is far away from zero  An outlier 
A point that is far away from the other points in the xdirection  An influential point 
Issue  Possible solution 

Nonconstant variance  Consider using a BoxCox transformation of the response variable or weights.. 
An outlier or influential point 

The residuals versus order plot displays the residuals in the order that the data were collected.
The residual versus variables plot displays the residuals versus another variable. The variable could already be included in your model. Or, the variable may not be in the model, but you suspect it affects the response.
If you see a nonrandom pattern in the residuals, it indicates that the variable affects the response in a systematic way. Consider including this variable in an analysis.