The total degrees of freedom (DF) are the amount of information in your data. The analysis uses that information to estimate the values of the coefficients. The total DF is 1 less than the number of rows in the data. The DF for a term shows how many coefficients that term uses. Increasing the number of terms in your model adds more coefficients to the model, which decreases the DF for error. The DF for error are the remaining degrees of freedom that are not used in the model.
For a 2-level factorial design or a Plackett-Burman design, if a design has center points, then one DF is for the test for curvature. If the term for center points is in the model, the row for curvature is part of the model. If the term for center points is not in the model, the row for curvature is part of the error that is used to test terms that are in the model. In response surface and definitive screening designs, you can estimate square terms, so the test for curvature is unnecessary.
When you specify use of the sequential deviance for tests, Minitab uses the sequential deviance to calculate the p-values for the regression model and the individual terms. Usually, you interpret the p-values instead of the sequential deviance.
Contribution displays the percentage that each source in the ANOVA table contributes to the total sequential deviance.
Higher percentages indicate that the source accounts for more of the deviance in the response variable. The percent contribution for the regression model is the same as the deviance R2.
Adjusted deviances are measures of variation for different components of the model. The order of the predictors in the model does not affect the calculation of the adjusted deviances. In the Deviance table, Minitab separates the deviance into different components that describe the deviance explained by different sources.
Minitab uses the adjusted deviances to calculate the p-value for a term. Minitab also uses the adjusted deviances to calculate the deviance R2 statistic. Usually, you interpret the p-values and the R2 statistic instead of the deviances.
Adjusted mean deviance measures how much deviance a term or a model explains for each degree of freedom. The calculation of the adjusted mean deviance for each term assumes that all other terms are in the model.
Minitab uses the chi-square value to calculate the p-value for a term. Usually, you interpret the p-values instead of the adjusted mean squares.
Each term in the ANOVA table has a chi-square value. The chi-square value is the test statistic that determines whether a term or model has an association with the response.
Minitab uses the chi-square statistic to calculate the p-value, which you use to make a decision about the statistical significance of the terms and the model. The p-value is a probability that measures the evidence against the null hypothesis. Lower probabilities provide stronger evidence against the null hypothesis. A sufficiently large chi-square statistic results in a small p-value, which indicates that the term or model is statistically significant.
The p-value is a probability that measures the evidence against the null hypothesis. Lower probabilities provide stronger evidence against the null hypothesis.
The tests in the Deviance table are likelihood ratio tests. The test in the expanded display of the Coefficients table are Wald approximation tests. The likelihood ratio tests are more accurate for small samples than the Wald approximation tests.
The p-value is a probability that measures the evidence against the null hypothesis. Lower probabilities provide stronger evidence against the null hypothesis.
The tests in the Analysis of variance table are likelihood ratio tests. The test in the expanded display of the Coefficients table are Wald approximation tests. The likelihood ratio tests are more accurate for small samples than the Wald approximation tests.