Mixture designs do not include a constant.
Term | Description |
---|---|
fitted value | |
xk | kth term. Each term can be a single predictor, a polynomial term, or an interaction term. |
bk | estimate of kth regression coefficient |
The standard error of the fitted value in a regression model with one predictor is:
The standard error of the fitted value in a regression model with more than one predictor is:
Term | Description |
---|---|
s2 | mean square error |
n | number of observations |
x0 | new value of the predictor |
mean of the predictor | |
xi | ith predictor value |
x0 | vector of values that produce the fitted values, one for each column in the design matrix |
x'0 | transpose of the new vector of predictor values |
X | design matrix |
Term | Description |
---|---|
yi | ith observed response value |
ith fitted value for the response |
Standardized residuals are also called "internally Studentized residuals."
Term | Description |
---|---|
ei | i th residual |
hi | i th diagonal element of X(X'X)–1X' |
s2 | mean square error |
X | design matrix |
X' | transpose of the design matrix |
Also called the externally Studentized residuals. The formula is:
Another presentation of this formula is:
The model that estimates the ith observation omits the ith observation from the data set. Therefore, the ith observation cannot influence the estimate. Each deleted residual has a student's t-distribution with degrees of freedom.
Term | Description |
---|---|
ei | ith residual |
s(i)2 | mean square error calculated without the ith observation |
hi | i th diagonal element of X(X'X)–1X' |
n | number of observations |
p | number of terms |
SSE | sum of squares for error |