The plotted points on the G chart are the number of opportunities between events or the days between events.
If the process is in control, the points vary randomly around the center line, and the process exhibits only common-cause variation. Investigate points that fail any of the tests for special causes or that exhibit nonrandom patterns for possible special-cause variation.
The center line on the G chart is the 50th percentile of the distribution.
Use the center line to observe how the process performs compared to the average. If the process is in control, then the points vary randomly around the center line.
Do not confuse the center line with the target value for your process. The target is your desired outcome. The center line is the actual outcome.
Control limits are the horizontal lines that are above and below the center line. On a G chart, the lower control limits is always set to 0. The upper control limit indicates whether a process is out of control, and it is based on the inverse CDF of the geometric distribution.
The tests for special causes assess whether the plotted points are randomly distributed within the control limits.
Use the tests for special causes to determine which observations you may need to investigate and to identify specific patterns and trends in your data. Each of the tests for special causes detects a specific pattern or trend in your data, which reveals a different aspect of process instability. For example, Test 1 detects a single out-of-control point. Test 2 detects a possible shift in the process.
Four tests are available with this control chart.
Use stages to create a historical control chart that shows how a process changes over specific periods of time. By default, Minitab recalculates the center line and control limits for each stage. For more information, go to Add stages to show how a process changed.
This historical control chart shows three stages of a process, which represent before, during, and after the implementation of a new procedure.