# Interpret the key results for Correlation

Complete the following steps to interpret a correlation analysis. Key output includes the Pearson correlation coefficient, the Spearman correlation coefficient, and the p-value.

## Step 1: Examine the relationships between variables on a matrix plot

Use the matrix plot to examine the relationships between two continuous variables. Also, look for outliers in the relationships. Outliers can heavily influence the results for the Pearson correlation coefficient.

Determine whether the relationships are linear, monotonic, or neither. The following are examples of the types of forms that the correlation coefficients describe. The Pearson correlation coefficient is appropriate for linear forms. Spearman's correlation coefficient is appropriate for monotonic forms.

## Step 2: Examine the correlation coefficients between variables

Use the Pearson correlation coefficient to examine the strength and direction of the linear relationship between two continuous variables.

Strength

The correlation coefficient can range in value from −1 to +1. The larger the absolute value of the coefficient, the stronger the relationship between the variables.

For the Pearson correlation, an absolute value of 1 indicates a perfect linear relationship. A correlation close to 0 indicates no linear relationship between the variables.
Direction

The sign of the coefficient indicates the direction of the relationship. If both variables tend to increase or decrease together, the coefficient is positive, and the line that represents the correlation slopes upward. If one variable tends to increase as the other decreases, the coefficient is negative, and the line that represents the correlation slopes downward.

Consider the following points when you interpret the correlation coefficient:
• It is never appropriate to conclude that changes in one variable cause changes in another based on correlation alone. Only properly controlled experiments enable you to determine whether a relationship is causal.
• The Pearson correlation coefficient is very sensitive to extreme data values. A single value that is very different from the other values in a data set can greatly change the value of the coefficient. You should try to identify the cause of any extreme value. Correct any data entry or measurement errors. Consider removing data values that are associated with abnormal, one-time events (special causes). Then, repeat the analysis.
• A low Pearson correlation coefficient does not mean that no relationship exists between the variables. The variables may have a nonlinear relationship.
By using this site you agree to the use of cookies for analytics and personalized content.  Read our policy