Calculate adjusted means as follows:

μ_{adj,i} = μ_{i} + q_{i}μ_{Pool}

where

If you do not specify mean shift factors, then the mean pool = 0.

Calculate adjusted standard deviations as follows:

σ^{2}_{adj,i} = σ^{2}_{i} + r_{i}σ^{2}_{Pool}

where

If you do not specify variation expansion factors and you do not specify both gap specification limits, then the variance pool = 0.

Term | Description |
---|---|

C_{i} | Diametrical correction of the i^{th} element |

D_{i} | Drift factor for the i^{th} element |

N_{i} | Complexity of the i^{th} element |

S_{i} | Shift factor for the i^{th} element |

σ_{i} | Standard deviation of the i^{th} element |

σ_{adj,i} | Adjusted standard deviation of the i^{th} element |

T | Gap targeted value (if not available, T = μ_{Gap,ST}) |

T_{i} | Nominal value of the i^{th} element |

μ_{i} | Mean of the i^{th} element |

μ_{adj,i} | Adjusted mean of the i^{th} element |

V_{i} | Directional vector of the i^{th} element |

w_{i} | Allocation weight for the mean pool or the variance pool, i^{th} element |

Z.Bench_{Gap,LT} | Benchmark Z (long-term) of the gap |

Z.Bench_{Gap,ST} | Benchmark Z (short-term) of the gap |

Z.Bench_{i,LT} | Benchmark Z (long-term) of the i^{th} element |

Z.Bench_{i,ST} | Benchmark Z (short-term) of the i^{th} element |

Z_{P} | Z-value, which gives desired PPM (right tail) for long-term gap distribution |