Find definitions and interpretation guidance for every statistic in the Response table.

Use the response tables to select the best level for each factor. Usually you have the following objectives with a Taguchi design:

- Minimize the standard deviation
- Maximize the S/N ratio
- Meet a target with the mean (static design)
- Meet a target with the slope (dynamic design)

Use the delta and rank values to identify the factors that have the largest effect on each response characteristic. Then, determine which levels of these factors meet your objectives. Sometimes, the best level of a factor for one response characteristic is different from the best level for a different response characteristic. To resolve this issue, it may help to predict the results for several combinations of factors levels to see which one produces the best result.

- Average response characteristics
- For each factor, Minitab calculates the average of the response characteristic at each level of the factor. For example, the design includes factor A at 2 levels (1 and 2) and 4 measurements at each level. Minitab calculates the mean of the 4 S/N ratios at level 1 and the mean of the other 4 S/N ratios at level 2. For more information, go to Methods and formulas for Analyze Taguchi Design.
- Delta
- Measures the size of the effect by taking the difference between the highest and lowest characteristic average for a factor.
- Rank
- The ranks in a response table help you quickly identify which factors have the largest effect. The factor with the largest delta value is given rank 1, the factor with the second largest delta is given rank 2, and so on.

In these results, the response tables show the following:

- For the Signal to Noise Ratios, B is ranked 1, followed by D, A, and C.
- For the Means, B is ranked 1, followed by A, C, and D.
- For the Standard Deviations, C is ranked 1, followed by B, A, and D.