Auswählen der Analyseoptionen für Trennschärfe und Stichprobenumfang für t-Test, 1 Stichprobe

Statistik > Trennschärfe und Stichprobenumfang > t-Test, 1 Stichprobe > Optionen

Wählen Sie die Alternativhypothese aus, oder geben Sie das Signifikanzniveau für den Test an.

Alternativhypothese
Wählen Sie im Feld Alternativhypothese die zu testende Hypothese aus:
  • Kleiner als: Verwenden Sie diesen einseitigen Test, um zu ermitteln, ob der Mittelwert der Grundgesamtheit kleiner als der hypothetische Wert ist. Dieser einseitige Test ist trennschärfer als ein beidseitiger Test, mit ihm kann aber nicht erkannt werden, ob der Mittelwert der Grundgesamtheit größer als der hypothetische Mittelwert ist.

    Ein Qualitätsanalytiker verwendet diesen einseitigen Test beispielsweise, um sich zu vergewissern, dass die mittlere Konzentration von Feststoffen im Wasser kleiner als 22,4 mg/l ist. Der einseitige Test besitzt eine größere Trennschärfe, um zu ermitteln, ob der Mittelwert kleiner als 22,4 mg/l ist, mit ihm kann aber nicht erkannt werden, ob der Mittelwert größer als 22,4 mg/l ist.

  • Ungleich: Verwenden Sie diesen beidseitigen Test, um zu ermitteln, ob der Mittelwert der Grundgesamtheit vom hypothetischen Mittelwert abweicht. Mit diesem beidseitigen Test können Differenzen erkannt werden, die kleiner oder größer als der hypothetische Wert sind; seine Trennschärfe ist aber geringer als die eines einseitigen Tests.

    Ein Techniker möchte beispielsweise wissen, ob der Mittelwert der Länge von Bleistiften vom Sollwert 18,85 cm abweicht. Da jede Abweichung vom Sollwert wichtig ist, verwendet der Techniker diesen beidseitigen Test, um zu ermitteln, ob der Mittelwert größer oder kleiner als der Sollwert ist.

  • Größer als: Verwenden Sie diesen einseitigen Test, um zu ermitteln, ob der Mittelwert der Grundgesamtheit größer als der hypothetische Wert ist.

    Ein Krankenhausverwalter verwendet diesen einseitigen Test beispielsweise, um zu ermitteln, ob die mittlere Bewertung bei einer Umfrage zur Patientenzufriedenheit größer als 90 ist. Dieser einseitige Test besitzt eine größere Trennschärfe, um zu ermitteln, ob die mittlere Bewertung größer als 90 ist, mit ihm kann aber nicht festgestellt werden, ob die mittlere Bewertung kleiner als 90 ist.

Weitere Informationen zum Auswählen einer einseitigen oder beidseitigen Alternativhypothese finden Sie unter Informationen zur Nullhypothese und zur Alternativhypothese.

Signifikanzniveau

Verwenden Sie das Signifikanzniveau, um den Trennschärfewert des Tests zu minimieren, wenn die Nullhypothese (H0) wahr ist. Bei höheren Signifikanzniveaus ist der Test trennschärfer, gleichzeitig steigt jedoch die Wahrscheinlichkeit, dass ein Fehler 1. Art auftritt, beim dem die Nullhypothese zurückgewiesen wird, wenn diese tatsächlich wahr ist.

In der Regel ist ein Signifikanzniveau (als α oder Alpha bezeichnet) von 0,05 gut geeignet. Ein Signifikanzniveau von 0,05 gibt ein Risiko von 5 % an, dass auf eine vorhandene Differenz geschlossen wird, während tatsächlich keine vorhanden ist. Zudem wird damit angegeben, dass die Trennschärfe des Tests gleich 0,05 ist, wenn keine Differenz vorhanden ist.
  • Wählen Sie ein höheres Signifikanzniveau wie 0,10, um möglicherweise vorhandene Differenzen mit größerer Gewissheit zu erkennen. Ein Qualitätstechniker vergleicht beispielsweise die Stabilität von neuen Kugellagern mit der Stabilität der derzeit verwendeten Kugellager. Der Techniker muss mit großer Sicherheit schlussfolgern können, dass die neuen Kugellager stabil sind, denn instabile Kugellager können schwere Unfälle nach sich ziehen. Daher wählt er ein Signifikanzniveau von 0,10, um mit größerer Sicherheit mögliche Differenzen in der Stabilität der Kugellager zu erkennen.
  • Wählen Sie niedrigeres Signifikanzniveau wie 0,01, um mit größerer Sicherheit davon ausgehen zu können, dass nur tatsächlich vorhandene Differenzen erkannt werden. Ein Forscher in einem Pharmaunternehmen muss beispielsweise sehr sicher sein, dass die Behauptung, dass das neue Medikament des Unternehmens die Symptome signifikant reduziert, der Wahrheit entspricht. Er wählt ein Signifikanzniveau von 0,01, um mit größerer Sicherheit behaupten zu können, dass signifikante Differenzen hinsichtlich der Symptome tatsächlich vorhanden sind.