Geben Sie das Konfidenzniveau für das Konfidenzintervall an, oder legen Sie die Alternativhypothese fest.
Geben Sie im Feld Konfidenzniveau das Konfidenzniveau für das Konfidenzintervall ein.
In der Regel ist ein Konfidenzniveau von 95 % gut geeignet. Ein 95%-Konfidenzniveau gibt an, dass bei einer Entnahme von 100 Zufallsstichproben aus der Grundgesamtheit die Konfidenzintervalle für ungefähr 95 der Stichproben den Parameter der Grundgesamtheit enthalten.
Verwenden Sie diesen einseitigen Test, um zu ermitteln, ob die Standardabweichung oder Varianz der Grundgesamtheit kleiner als die hypothetische Standardabweichung oder Varianz ist, und um eine Obergrenze zu erhalten. Dieser einseitige Test ist trennschärfer als ein beidseitiger Test, mit ihm kann aber nicht erkannt werden, ob die Standardabweichung oder Varianz der Grundgesamtheit größer als der hypothetische Wert ist.
Ein Logistikanalytiker verwendet diesen einseitigen Test beispielsweise, um zu ermitteln, ob die Standardabweichung bei Liefergewichten kleiner als 8,8 kg ist. Dieser einseitige Test besitzt eine größere Trennschärfe, um zu ermitteln, ob die Standardabweichung kleiner als 8,8 ist, aber mit ihm kann nicht festgestellt werden, ob die Standardabweichung größer als 8,8 ist.
Verwenden Sie diesen beidseitigen Test, um zu ermitteln, ob die Standardabweichung oder Varianz der Grundgesamtheit von der hypothetischen Standardabweichung oder Varianz abweicht, und um ein beidseitiges Konfidenzintervall zu erhalten. Mit einem beidseitigen Test können Differenzen erkannt werden, die kleiner oder größer als der hypothetische Wert sind; seine Trennschärfe ist aber geringer als die eines einseitigen Tests.
Ein Qualitätsanalytiker testet beispielsweise, ob die Varianz des Füllvolumens vom Sollwert 2,5 abweicht. Da jede Abweichung vom Sollwert wichtig ist, testet der Analytiker, ob die Differenz größer oder kleiner als der Sollwert ist.
Verwenden Sie diesen einseitigen Test, um zu ermitteln, ob die Standardabweichung oder Varianz der Grundgesamtheit größer als die hypothetische Standardabweichung oder Varianz ist, und um eine Untergrenze zu erhalten. Dieser einseitige Test ist trennschärfer als ein beidseitiger Test, mit ihm kann aber nicht erkannt werden, ob die Standardabweichung oder Varianz der Grundgesamtheit kleiner als die hypothetische Standardabweichung oder Varianz ist.
Ein Analytiker verwendet diesen einseitigen Test beispielsweise, um zu ermitteln, ob die Standardabweichung bei Rohrdurchmessern größer als 2 mm ist. Dieser einseitige Test besitzt eine größere Trennschärfe, um zu ermitteln, ob die Abweichung größer als 2 mm ist, mit ihm kann aber nicht festgestellt werden, ob die Abweichung kleiner als 2 mm ist.
Weitere Informationen zum Auswählen einer einseitigen oder beidseitigen Alternativhypothese finden Sie unter Informationen zur Nullhypothese und zur Alternativhypothese.