Bei Poisson-Prozessen werden die Vorkommen eines bestimmten Ereignisses oder einer Eigenschaft in einem angegebenen Beobachtungsbereich gezählt, der in Bezug auf Zeit, Fläche, Volumen, Anzahl von Elementen usw. definiert sein kann. Der Beobachtungsumfang stellt die Größe, die Dauer oder das Ausmaß der einzelnen Beobachtungsbereiche dar.
Minitab verwendet den Beobachtungsumfang, um die Rate der Stichprobe in eine Form umzuwandeln, die für Ihre Situation am besten geeignet ist.
Wenn beispielsweise mit jeder Stichprobenbeobachtung die Anzahl der Ereignisse pro Jahr gezählt wird, stellt der Umfang 1 eine jährliche Ereignisrate dar, während ein Umfang von 12 eine monatliche Ereignisrate angibt.
In der Ausgabe können Sie mit Hilfe der Nullhypothese und der Alternativhypothese überprüfen, ob Sie den korrekten Wert für die hypothetische Rate eingegeben haben.
Die Gesamt-Ereignishäufigkeit gibt an, wie oft ein Ereignis in der Stichprobe auftritt.
Der Stichprobenumfang (N) ist die Anzahl der gezählten Ereignisse in der Stichprobe.
Der Stichprobenumfang wirkt sich auf das Konfidenzintervall, die Trennschärfe des Tests und die Ereignisrate aus.
Eine größere Stichprobe führt in der Regel zu einem schmaleren Konfidenzintervall. Bei größeren Stichprobenumfängen verfügt der Test außerdem über eine höhere Trennschärfe zum Erkennen einer Differenz. Weitere Informationen finden Sie unter Was ist die Trennschärfe?.
Die Rate der Stichprobe für ein Ereignis entspricht der durchschnittlichen Häufigkeit des Auftretens des Ereignisses pro Einheit des Beobachtungsumfangs in der Stichprobe.
Die Rate der Stichprobe eines Ereignisses ist ein Schätzwert der Rate der Grundgesamtheit des betreffenden Ereignisses.
Da die Rate der Stichprobe auf Stichprobendaten und nicht auf der vollständigen Grundgesamtheit basiert, ist es unwahrscheinlich, dass die Rate der Stichprobe gleich der Ereignisrate der Grundgesamtheit ist. Verwenden Sie das Konfidenzintervall, um die Ereignisrate der Grundgesamtheit besser schätzen zu können.
Wenn der Beobachtungsumfang ungleich 1 ist, zeigt Minitab den Mittelwert der Stichprobe an. Der Mittelwert der Stichprobe entspricht der Gesamtzahl der Ereignisse dividiert durch den Stichprobenumfang. Da der Beobachtungsumfang jedoch von 1 abweicht, ist die Rate der Stichprobe im Allgemeinen in der jeweiligen Situation nützlicher.
Das Konfidenzintervall ist ein Bereich wahrscheinlicher Werte für die Rate der Grundgesamtheit. Da die Stichproben zufällig sind, ist es unwahrscheinlich, dass zwei Stichproben aus einer Grundgesamtheit identische Konfidenzintervalle ergeben. Wenn Sie die Stichprobennahme jedoch viele Male wiederholen, enthält ein bestimmter Prozentsatz der resultierenden Konfidenzintervalle oder -grenzen die unbekannte Rate der Grundgesamtheit. Der Prozentsatz dieser Konfidenzintervalle oder -grenzen, die die Rate enthalten, stellt das Konfidenzniveau des Intervalls dar. Ein 95%-Konfidenzniveau gibt beispielsweise an, dass bei einer Entnahme von 100 Zufallsstichproben aus der Grundgesamtheit die Konfidenzintervalle für voraussichtlich ca. 95 der Stichproben die Rate der Grundgesamtheit enthalten.
Eine Obergrenze ist der Wert, der wahrscheinlich größer als die Rate der Grundgesamtheit ist. Eine Untergrenze ist der Wert, der wahrscheinlich kleiner als die Rate der Grundgesamtheit ist.
Anhand des Konfidenzintervalls können Sie die praktische Signifikanz Ihrer Ergebnisse beurteilen. Bestimmen Sie anhand Ihrer Fachkenntnisse, ob das Konfidenzintervall Werte umfasst, die in der jeweiligen Situation von praktischer Signifikanz sind. Wenn das Intervall zu breit und damit nicht hilfreich ist, erwägen Sie, den Stichprobenumfang zu vergrößern. Weitere Informationen finden Sie unter Möglichkeiten zum Erhöhen der Genauigkeit des Konfidenzintervalls.
N | Ereignishäufigkeit gesamt | Rate der Stichprobe | 95%-KI für λ |
---|---|---|---|
30 | 598 | 19,9333 | (18,3675; 21,5970) |
In diesen Ergebnissen beträgt der Schätzwert der Ereignisrate der Grundgesamtheit für die Anzahl von Kundenbeschwerden pro Tag etwa 19,93. Sie können sich zu 95 % sicher sein, dass die Ereignisrate der Grundgesamtheit zwischen etwa 18,37 und 21,6 liegt.
Der z-Wert ist eine Teststatistik für z-Tests, mit der die Differenz zwischen einer beobachteten Statistik und deren hypothetischem Parameter der Grundgesamtheit in Einheiten des Standardfehlers gemessen wird.
Sie müssen Normal-Approximation als Methode für Minitab auswählen, um den Z-Wert zu berechnen.
Sie können den z-Wert mit den kritischen Werten der Standardnormalverteilung vergleichen, um zu bestimmen, ob die Nullhypothese zurückzuweisen ist. Es jedoch im Allgemeinen praktischer, hierfür den p-Wert des Tests heranzuziehen.
Um zu bestimmen, ob die Nullhypothese zurückzuweisen ist, vergleichen Sie den z-Wert mit dem kritischen Wert. Der kritische Wert ist Z 1-α/2 für eine einseitige Prüfung und Z1-α für eine einseitige Prüfung. Wenn bei einem beidseitigen Test der Absolutwert des z-Werts größer als der kritische Wert ist, verwerfen Sie die Nullhypothese. Andernfalls verwerfen Sie die Nullhypothese nicht. Sie können den kritischen Wert in Minitab berechnen oder diesen einer in den meisten Fachbüchern vorhandenen Tabelle der Standardnormalverteilung entnehmen. Weitere Informationen finden Sie unter Verwenden der inversen kumulativen Verteilungsfunktion (ICDF); klicken Sie dort auf „Verwenden der ICDF zum Berechnen von kritischen Werten“.
Der p-Wert ist ein Wahrscheinlichkeitsmaß für die Anzeichen gegen die Annahme der Nullhypothese. Ein kleinerer p-Wert liefert stärkere Anzeichen dafür, dass die Nullhypothese nicht zutrifft.
Verwenden Sie den p-Wert, um zu ermitteln, ob die Rate der Grundgesamtheit statistisch von der hypothetischen Rate abweicht.