Methoden und Formeln für die ANOVA-Tabelle für Stabilitätsuntersuchung für feste Chargen

Wählen Sie die gewünschte Methode oder Formel aus.

Summe der Quadrate (SS)

In Bezug auf Matrizen lauten die Formeln für die verschiedenen Summen der Quadrate wie folgt:

Minitab schlüsselt die Komponenten der Summe der Quadrate der Regression bzw. der Behandlungen in den Teil der Streuung auf, der durch die einzelnen Terme erklärt wird, wobei sowohl die sequenzielle Summe der Quadrate als auch die korrigierte Summe der Quadrate verwendet werden.

Notation

BegriffBeschreibung
bVektor von Koeffizienten
XDesignmatrix
YVektor von Werten der Antwortvariablen
nAnzahl der Beobachtungen
J(n x n)-Matrix von 1s

Kor MS – Regression

Die Formel für das Mittel der Quadrate (MS) der Regression lautet wie folgt:

Notation

BegriffBeschreibung
Mittelwert der Antwortvariablen
i-ter angepasster Wert der Antwortvariablen
pAnzahl der Terme im Modell

Kor MS – Fehler

Das mittlere Fehlerquadrat (das auch als MS Fehler oder MSE abgekürzt und als s2 angegeben wird) ist die Varianz um die angepasste Regressionslinie. Die Formel lautet wie folgt:

Notation

BegriffBeschreibung
yii-ter beobachteter Wert der Antwortvariablen
i-ter angepasster Wert der Antwortvariablen
nAnzahl der Beobachtungen
pAnzahl der Koeffizienten im Modell, wobei die Konstante nicht gezählt wird

F

Wenn alle Faktoren im Modell fest sind, hängt die Berechnung der F-Statistik wie folgt vom Gegenstand des Hypothesentests ab:

F(Term)
F(fehlende Anpassung)

Wenn Zufallsfaktoren im Modell enthalten sind, wird F mit dem erwarteten Mittel der Quadrate für jeden Term bestimmt. Weitere Informationen finden Sie in Neter et al.1.

Notation

BegriffBeschreibung
Kor MS TermEin Maß der Streuung, die durch einen Term erklärt wird, nachdem die anderen Terme im Modell berücksichtigt wurden.
MS FehlerEin Maß der Streuung, die durch das Modell nicht erklärt wird.
MS Fehlende AnpassungEin Maß der Streuung in der Antwortvariablen, die durch Hinzufügen weiterer Terme zum Modell modelliert werden könnte.
MS Reiner FehlerEin Maß der Streuung in replizierten Antwortdaten.
  1. J. Neter, W. Wasserman und M. H. Kutner (1985). Applied Linear Statistical Models, Second Edition. Irwin, Inc.

p-Wert (p)

p-Werte werden in Hypothesentests verwendet, um Ihnen die Entscheidung zu ermöglichen, ob eine Nullhypothese zurückgewiesen oder nicht zurückgewiesen werden sollte. Der p-Wert stellt die Wahrscheinlichkeit dar, eine Teststatistik zu erhalten, die mindestens so extrem wie der tatsächlich berechnete Wert ist, wenn die Nullhypothese wahr ist. Ein häufig verwendeter Trennwert für den p-Wert ist 0,05. Wenn beispielsweise der berechnete p-Wert einer Teststatistik kleiner als 0,05 ist, weisen Sie die Nullhypothese zurück.