Grenzwertoptimierungskurve (ROC-Kurve) für CART® Klassifikation

Die ROC-Kurve stellt die True-Positive-Rate (TPR), auch als Potenz bezeichnet, auf der y-Achse dar. Die ROC-Kurve zeigt die Falsch-Positiv-Rate (FPR), auch als Fehler 1. Art bezeichnet, auf der x-Achse. Die Fläche unter einer ROC-Kurve gibt an, ob der Klassifikationsbaum ein guter Klassifikator ist.

Interpretation

Bei Klassifikationsbäumen kann die Fläche unter der ROC-Kurve Werte von 0,5 bis 1 annehmen. Wenn ein Klassifikationsbaum die Klassen perfekt trennen kann, entspricht die Fläche unter der Kurve 1. Wenn ein Klassifikationsbaum die Klassen nicht besser als eine zufällige Einteilung trennen kann, entspricht die Fläche unter der Kurve 0,5. Die rote gepunktete Linie bildet die zufällige Zuweisung ab.

In diesem Beispiel ähneln sich die Trainings- und die Testkurve. Die Fläche unter der Kurve für den Test beträgt 0,820.