Geben Sie die Optionen für die Analyse der schrittweisen Regression des Screening-Versuchsplans an.
Terme werden schrittweise aus dem Modell entfernt bzw. dem Modell schrittweise hinzugefügt, um eine nützliche Teilmenge von Termen zu bestimmen. Wenn Sie eine schrittweise Prozedur wählen, werden die Begriffe, die Sie im Terme Unterdialogfeld sind Kandidaten für das endgültige Modell. Weitere Informationen finden Sie unter Verwendung der Regression der besten Teilmengen und der schrittweisen Regression.
Es kann von Einschränkungen im Hinblick auf die Hierarchie für die Modelle abhängen, welche Terme in das endgültige Modell eingebunden werden. Weitere Informationen finden Sie im untenstehenden Thema „Hierarchie“.
Geben Sie an, welches Informationskriterium bei der Vorwärtsauswahl verwendet werden soll.
Sowohl AICc als auch BIC werten die Likelihood des Modells aus und wenden dann einen Abzug für das Hinzufügen von Termen zum Modell an. Durch den Abzug wird die Tendenz zur Überanpassung des Modells an die Stichprobendaten reduziert. Durch diese Reduzierung kann ein Modell zustande kommen, das insgesamt eine bessere Leistung erbringt.
Als Faustregel gilt: Wenn die Anzahl der Parameter im Verhältnis zum Stichprobenumfang klein ist, ist der Abzug für das Hinzufügen der einzelnen Parameter für BIC größer als für AICc. In diesen Fällen ist das Modell, bei dem BIC minimiert wird, tendenziell kleiner als das Modell, bei dem AICc minimiert wird.
In einigen gängigen Fällen, z. B. bei Screening-Versuchsplänen, ist die Anzahl der Parameter im Verhältnis zum Stichprobenumfang in der Regel groß. In diesen Fällen ist das Modell, bei dem AICc minimiert wird, tendenziell kleiner als das Modell, bei dem BIC minimiert wird. Bei einem definitiven Screening-Versuchsplan mit 13 Durchläufen ist beispielsweise in der Gruppe der Modelle mit 6 oder mehr Parametern das Modell, bei dem AICc minimiert wird, tendenziell kleiner als das Modell, bei dem BIC minimiert wird.
Weitere Informationen zum AICc und BIC finden Sie in Burnham und Anderson.1
Sie können bestimmen, wie Minitab die Modellhierarchie während einer schrittweisen Regression erzwingt. Die Schaltfläche Hierarchie ist deaktiviert, wenn Sie im Unterdialogfeld Terme ein nicht hierarchisches Modell angeben.
In einem hierarchischen Modell sind alle Terme niedriger Ordnung, aus denen sich die Terme höherer Ordnung zusammensetzen, ebenfalls im Modell enthalten. Ein Modell, das den Wechselwirkungsterm A*B*C enthält, muss beispielsweise auch die Terme A, B, C, A*B, A*C und B*C umfassen, damit es hierarchisch ist.
Die Modelle müssen hierarchisch sein, wenn Sie eine Gleichung in nicht kodierten Einheiten erstellen möchten. Wägen Sie diese Überlegung jedoch gegen den Umstand ab, dass Modelle mit zu vielen Termen relativ unpräzise sein und die Fähigkeit beeinträchtigen können, die Werte neuer Beobachtungen zu prognostizieren.