Die Gesamt-Freiheitsgrade (DF) entsprechen der Menge an Informationen in Ihren Daten. In der Analyse werden diese Informationen verwendet, um die Werte von unbekannten Parametern der Grundgesamtheit zu schätzen. Die Gesamt-Freiheitsgrade werden durch die Anzahl der Beobachtungen in der Stichprobe bestimmt. Die DF für einen Term geben an, wie viele Informationen von dem betreffenden Term genutzt werden. Wenn Sie die Stichprobe vergrößern, stehen Ihnen mehr Informationen über die Grundgesamtheit und somit auch mehr Gesamt-Freiheitsgrade zur Verfügung. Durch Vergrößern der Anzahl von Termen im Modell werden mehr Informationen genutzt, wodurch die verfügbaren DF zum Schätzen der Streuung der Parameterschätzwerte abnehmen.
Die Gesamt-Freiheitsgrade hängen von der Anzahl der Beobachtungen ab. In einem Mischungsversuchsplan entsprechen die Gesamt-Freiheitsgrade der Anzahl der Beobachtungen minus 1. Die Freiheitsgrade für einen Term entsprechen der Anzahl der geschätzten Koeffizienten für diesen Term. Die Freiheitsgrade des Residuenfehlers entsprechen dem, was nach Berücksichtigung aller Modellterme übrig bleibt.
Die sequenziellen Summen der Quadrate sind Maße für die Streuung der verschiedenen für das Modell aufgeführten Quellen. Im Unterschied zu den korrigierten Summen der Quadrate hängen die sequenziellen Summen der Quadrate von der Reihenfolge ab, in der die Terme in das Modell aufgenommen wurden. In der Tabelle der Varianzanalyse unterteilt Minitab die sequenziellen Summen der Quadrate nach verschiedenen Quellen, wie im Folgenden aufgeführt.
Minitab verwendet die sequenziellen Summen der Quadrate beim Analysieren eines Versuchsplans nicht, um p-Werte zu berechnen, Sie können die sequenziellen Summen der Quadrate jedoch beim Ausführen der Befehle Regressionsmodell anpassen und Allgemeines lineares Modell anpassen verwenden. Im Allgemeinen interpretieren Sie die p-Werte und das R2 auf der Grundlage der korrigierten Summe der Quadrate.
Die korrigierten Summen der Quadrate sind Maße für die Streuung der verschiedenen für das Modell aufgeführten Quellen. Die Reihenfolge der Prädiktoren im Modell wirkt sich nicht auf die Berechnung der korrigierten Summen der Quadrate aus. In der Tabelle der Varianzanalyse unterteilt Minitab die korrigierten Summen der Quadrate nach verschiedenen Quellen, wie im Folgenden aufgeführt.
Minitab verwendet die korrigierten Summen der Quadrate, um die p-Werte in der ANOVA-Tabelle zu berechnen. Zudem verwendet Minitab die Summen der Quadrate, um das R2 zu berechnen. Im Allgemeinen interpretieren Sie die p-Werte sowie das R2 und nicht die Summen der Quadrate.
Mit dem korrigierten Mittel der Quadrate wird angegeben, wie viel der Streuung von einem Term oder einem Modell erklärt wird; hierbei wird angenommen, dass alle übrigen Terme im Modell enthalten sind, jedoch wird ihre Reihenfolge im Modell außer Acht gelassen. Im Unterschied zur korrigierten Summe der Quadrate werden beim korrigierten Mittel der Quadrate die Freiheitsgrade berücksichtigt.
Der korrigierte mittlere quadrierte Fehler (auch als MSE oder s2 bezeichnet) ist die Varianz um die angepassten Werte.
Minitab verwendet die korrigierten Mittel der Quadrate, um die p-Werte in der ANOVA-Tabelle zu berechnen. Außerdem verwendet Minitab das korrigierte Mittel der Quadrate, um das korrigierte R2 zu berechnen. Im Allgemeinen interpretieren Sie die p-Werte und das korrigierte R2 und nicht das korrigierte Mittel der Quadrate.
Für jeden Test in der Tabelle der Varianzanalyse wird ein F-Wert angezeigt.
Minitab verwendet den F-Wert zum Berechnen des p-Werts, anhand dessen Sie eine Entscheidung über die statistische Signifikanz des Tests treffen können. Der p-Wert ist ein Wahrscheinlichkeitsmaß für die Anzeichen gegen die Annahme der Nullhypothese. Geringere Wahrscheinlichkeiten liefern stärkere Anzeichen dafür, dass die Nullhypothese nicht zutrifft. Ein hinreichend großer F-Wert gibt eine statistische Signifikanz an.
Wenn Sie mit dem F-Wert feststellen möchten, ob die Nullhypothese zurückzuweisen ist, vergleichen Sie den F-Wert mit dem kritischen Wert. Sie können den kritischen Wert in Minitab berechnen oder diesen einer in den meisten Fachbüchern vorhandenen Tabelle für die F-Verteilung entnehmen. Weitere Informationen zum Berechnen des kritischen Werts mit Hilfe von Minitab finden Sie unter Verwenden der inversen kumulativen Verteilungsfunktion (ICDF); klicken Sie dort auf „Verwenden der ICDF zum Berechnen von kritischen Werten“.
Der p-Wert ist ein Wahrscheinlichkeitsmaß für die Anzeichen gegen die Annahme der Nullhypothese. Geringere Wahrscheinlichkeiten liefern stärkere Anzeichen dafür, dass die Nullhypothese nicht zutrifft.
Wenn der p-Wert größer als das Signifikanzniveau ist, können Sie nicht schlussfolgern, dass das Modell die Streuung in der Antwortvariablen erklärt. Es empfiehlt sich möglicherweise, ein neues Modell anzupassen.
Der p-Wert ist ein Wahrscheinlichkeitsmaß für die Anzeichen gegen die Annahme der Nullhypothese. Geringere Wahrscheinlichkeiten liefern stärkere Anzeichen dafür, dass die Nullhypothese nicht zutrifft.
Minitab zeigt aufgrund der Abhängigkeit zwischen den Komponenten in Modellen für Mischungsexperimente keine p-Werte für die Haupteffekte an. Da die Komponentenanteile zusammen einen festen Betrag oder Anteil ergeben müssen, führt eine Änderung an einer Komponente zwingend zu Änderungen an den anderen Komponenten. Außerdem weist das Modell für das Mischungsexperiment keinen Term für den Schnittpunkte mit der y-Achse auf, da sich die einzelnen Komponententerme wie Terme für den Schnittpunkte mit der y-Achse verhalten.
Der p-Wert ist ein Wahrscheinlichkeitsmaß für die Anzeichen gegen die Annahme der Nullhypothese. Geringere Wahrscheinlichkeiten liefern stärkere Anzeichen dafür, dass die Nullhypothese nicht zutrifft. Minitab führt automatisch den Test auf fehlende Anpassung für reine Fehler aus, wenn die Daten Replikationen enthalten, bei denen es sich um mehrere Beobachtungen mit identischen x-Werten handelt. Replikationen stellen „reine Fehler“ dar, da Unterschiede zwischen den beobachteten Werten der Antwortvariablen nur durch zufällige Streuung verursacht werden können.
Wenn der p-Wert größer als das Signifikanzniveau ist, wird mit dem Test keine fehlende Anpassung erkannt.