Interpretieren der wichtigsten Ergebnisse für Faktoriellen Versuchsplan analysieren

Führen Sie die folgenden Schritte aus, um einen faktoriellen Versuchsplan zu analysieren. Zu den wichtigsten Ausgaben zählen das Pareto-Diagramm, die p-Werte, die Koeffizienten, die Statistiken zur Zusammenfassung des Modells und die Residuendiagramme.

Schritt 1: Bestimmen, welche Terme am stärksten zur Streuung der Antwortvariablen beitragen

Verwenden Sie ein Pareto-Diagramm der standardisierten Effekte, um die relative Größe und die statistische Signifikanz von Haupteffekten und Wechselwirkungseffekten zu vergleichen. Im Diagramm wird der Typ des Effekts wie folgt dargestellt:
  • Wenn das Modell keinen Fehlerterm enthält, werden im Diagramm die Absolutwerte der nicht standardisierten Effekte angezeigt.
  • Wenn das Modell einen Fehlerterm enthält, werden im Diagramm die Absolutwerte der standardisierten Effekte angezeigt.

Minitab stellt die standardisierten Effekte in absteigender Reihenfolge ihrer Absolutwerte dar. Die Referenzlinie im Diagramm zeigt, welche Effekte signifikant sind. In der Standardeinstellung zeichnet Minitab die Referenzlinie bei einem Signifikanzniveau von 0,05. Wenn kein Fehlerterm vorhanden ist, zeichnet Minitab die Referenzlinie mit Hilfe der Lenth-Methode.

Wichtigste Ergebnisse: Pareto-Diagramm

In diesen Ergebnisse sind die vier Haupteffekte statistisch signifikant (α = 0,05). Dazu zählen alle vier Haupteffekte - Materialart (A), Einspritzdruck (B), Einspritztemperatur (C) und Abkühltemperatur (D).

Dabei hat der Einspritzdruck (B) den größten Effekt, da der entsprechende Balken am längsten ist. Der Effekt durch die Wechselwirkung zwischen Einspritzdruck und Abkühltemperatur ist am geringsten, da der entsprechende Balken der kürzeste ist.

Schritt 2: Bestimmen, welche Terme statistisch signifikante Effekte auf die Antwortvariable haben

Um zu bestimmen, ob die Assoziation zwischen der Antwortvariablen und jedem Term im Modell statistisch signifikant ist, vergleichen Sie den p-Wert für den Term mit dem Signifikanzniveau, um die Nullhypothese auszuwerten. Die Nullhypothese besagt, dass der Koeffizient des Terms gleich null ist, was bedeutet, dass keine Assoziation zwischen dem Term und der Antwortvariablen besteht. In der Regel ist ein Signifikanzniveau (als α oder Alpha bezeichnet) von 0,05 gut geeignet. Ein Signifikanzniveau von 0,05 bedeutet ein Risiko, dass auf eine vorhandene Assoziation geschlossen wird, während tatsächlich keine vorhanden ist, von 5 %.
p-Wert ≤ α: Die Assoziation ist statistisch signifikant
Wenn der p-Wert kleiner oder gleich dem Signifikanzniveau ist, können Sie schlussfolgern, dass eine statistisch signifikante Assoziation zwischen der Antwortvariablen und dem Term besteht.
p-Wert > α: Die Assoziation ist statistisch nicht signifikant
Wenn der p-Wert größer als das Signifikanzniveau ist, können Sie nicht schlussfolgern, dass eine statistisch signifikante Assoziation zwischen der Antwortvariablen und dem Term besteht. Es empfiehlt sich möglicherweise, dass Modell ohne den Term erneut anzupassen.
Wenn mehrere Prädiktoren ohne eine statistisch signifikante Assoziation mit der Antwortvariablen vorhanden sind, können Sie das Modell reduzieren, indem Sie Terme einzeln nacheinander entfernen. Weitere Informationen zum Entfernen von Termen aus dem Modell finden Sie unter Modellreduzierung.
Wenn ein Modellterm statistisch signifikant ist, hängt die Interpretation von der Art des Terms ab. Die Interpretationen lauten wie folgt:
  • Wenn ein Koeffizient für einen Faktor signifikant ist, können Sie schlussfolgern, dass nicht alle Mittelwerte der Faktorstufen gleich sind.
  • Wenn ein Koeffizient für eine Kovariate signifikant ist, besteht eine Assoziation zwischen Änderungen des Werts der Variablen und Änderungen des Mittelwerts der Antwortvariablen.
  • Wenn ein Koeffizient für einen Wechselwirkungsterm signifikant ist, hängt die Beziehung zwischen einem Faktor und der Antwortvariablen von den anderen Faktoren im Term ab. In diesem Fall sollten Sie die Haupteffekte nicht interpretieren, ohne dabei den Wechselwirkungseffekt zu berücksichtigen.

Varianzanalyse

QuelleDFKor SSKor MSF-Wertp-Wert
Modell11451,35741,03217,990,007
  Kovariaten13,5913,5911,580,278
    MessTemp13,5913,5911,580,278
  Linear4304,58776,14733,390,002
    Material135,05335,05315,370,017
    EinsprDruck1113,068113,06849,590,002
    EinsprTemp175,53375,53333,120,005
    AbkühlTemp138,66638,66616,960,015
  2-Faktor-Wechselwirkungen620,3093,3851,480,366
    Material*EinsprDruck11,7321,7320,760,433
    Material*EinsprTemp13,0453,0451,340,312
    Material*AbkühlTemp10,0950,0950,040,848
    EinsprDruck*EinsprTemp11,5381,5380,670,458
    EinsprDruck*AbkühlTemp10,0120,0120,010,947
    EinsprTemp*AbkühlTemp114,69414,6946,440,064
Fehler49,1212,280   
Gesamt15460,478     
Wichtigste Ergebnisse: p-Wert, Koeffizienten

In diesen Ergebnissen sind die Haupteffekte für „Material“, „EinsprDruck“, „EinsprTemp“ und „AbkühlTemp“ auf dem Signifikanzniveau 0,05 signifikant. Sie können schlussfolgern, dass zwischen Änderungen dieser Variablen und Änderungen der Antwortvariablen eine Assoziation besteht.

„MessTemp“ ist in diesem Modell eine Kovariate. Der Koeffizient für den Haupteffekt stellt die Änderung des Mittelwerts der Antwortvariablen für eine Zunahme der Kovariate um eine Einheit dar, wobei alle übrigen Terme im Modell auf konstanten Werten gehalten werden. Für jeden Anstieg der Temperatur um ein Grad verringert sich die geschätzte mittlere Festigkeit um −1,229.

Die Zwei-Faktor-Wechselwirkungsterme sind statistisch nicht signifikant. Die Beziehung zwischen den einzelnen Variablen und der Antwortvariablen hängen möglicherweise nicht vom Wert der jeweils anderen Variablen ab.

Schritt 3: Bestimmen, wie gut das Modell an die Daten angepasst ist

Um zu ermitteln, wie gut das Modell an die Daten angepasst ist, untersuchen Sie die Statistiken für die Güte der Anpassung in der Tabelle „Zusammenfassung des Modells“.

S

Verwenden Sie S, um zu ermitteln, wie genau das Modell die Antwortvariable beschreibt. Verwenden Sie S anstelle von R2, um die Anpassung von Modellen zu vergleichen, die keine Konstante enthalten.

S wird in der Maßeinheit der Antwortvariablen ausgedrückt und stellt den Abstand der Datenwerte von den angepassten Werten dar. Je niedriger der Wert von S, desto genauer beschreibt das Modell die Antwortvariable. Ein niedriger Wert von S allein bedeutet jedoch nicht zwangsläufig, dass das Modell die Modellannahmen erfüllt. Prüfen Sie die Annahmen anhand der Residuendiagramme.

R-Qd

Je höher das R2, desto besser ist das Modell an die Daten angepasst. Das R2 liegt immer zwischen 0 % und 100 %.

Der Wert von R2 nimmt beim Einbinden zusätzlicher Prädiktoren in das Modell stets zu. Das beste Modell mit fünf Prädiktoren weist beispielsweise immer ein R2 auf, das mindestens so hoch wie das des besten Modells mit vier Prädiktoren ist. Daher ist R2 am nützlichsten, wenn Sie Modelle derselben Größe vergleichen.

R-Qd(kor)

Verwenden Sie das korrigierte R2, wenn Sie Modelle vergleichen möchten, die eine unterschiedliche Anzahl von Prädiktoren enthalten. R2 nimmt stets zu, wenn Sie einen zusätzlichen Prädiktor in das Modell aufnehmen, selbst wenn damit keine tatsächliche Verbesserung des Modells verbunden ist. Der Wert des korrigierten R2 berücksichtigt die Anzahl der Prädiktoren im Modell, so dass Ihnen das Auswählen des richtigen Modells erleichtert wird.

R-Qd(prog)

Verwenden Sie das prognostizierte R2, um zu ermitteln, wie genau das Modell Werte der Antwortvariablen für neue Beobachtungen prognostiziert. Modelle mit einem höheren prognostizierten R2 zeichnen sich durch eine bessere Prognosefähigkeit aus.

Ein prognostiziertes R2, das wesentlich kleiner als R2 ist, kann auf eine übermäßige Anpassung des Modells hinweisen. Ein übermäßig angepasstes Modell liegt vor, wenn Sie Terme für Effekte hinzufügen, die in der Grundgesamtheit unbedeutend sind. Das Modell wird somit an die Stichprobendaten angepasst und ist daher möglicherweise beim Aufstellen von Prognosen für die Grundgesamtheit nicht nützlich.

Das prognostizierte R2 kann zudem beim Vergleichen von Modellen nützlicher als das korrigierte R2 sein, da der Wert mit Beobachtungen berechnet wird, die in der Modellberechnung nicht enthalten sind.

AICc und BIC
Wenn Sie die Details für die einzelnen Schritte einer Methode der schrittweisen Regression oder die erweiterten Ergebnisse der Analyse anfordern, zeigt Minitab zwei weitere Statistiken an. Bei diesen Statistiken handelt es sich um Akaikes korrigiertes Informationskriterium (AICc) und das Bayessche Informationskriterium (BIC). Anhand dieser Statistiken können Sie verschiedene Modelle vergleichen. Bei jeder dieser Statistiken sind kleinere Werte erwünscht. Für Split-Plot-Designs zeigt Minitab diese Statistiken nicht an.
Berücksichtigen Sie die folgenden Punkte, wenn Sie die Statistiken für die Güte der Anpassung interpretieren:
  • Kleine Stichproben ermöglichen keinen genauen Schätzwert für die Stärke der Beziehung zwischen der Antwortvariablen und den Prädiktoren. Wenn das R2 genauer sein muss, sollten Sie einen größeren Stichprobenumfang (im Allgemeinen 40 oder mehr) wählen.
  • R2 ist nur eines der Maße für die Güte der Anpassung des Modells an die Daten. Selbst wenn ein Modell ein hohes R2 aufweist, sollten Sie die Residuendiagramme untersuchen, um sich zu vergewissern, dass das Modell die Modellannahmen erfüllt.

Zusammenfassung des Modells

SR-QdR-Qd(kor)R-Qd(prog)
1,5100598,02%92,57%70,86%
Wichtigste Ergebnisse: S, R-Qd, R-Qd(kor), R-Qd(prog)

In diesen Ergebnissen erklärt das Modell 98,02 % der Streuung in der Lichtausbeute. Für diese Daten gibt das R2 an, dass das Modell gut an die Daten angepasst ist. Wenn weitere Modelle mit anderen Prädiktoren angepasst werden, verwenden Sie die Werte des korrigierten R2 und des prognostizierten R2, um die Güte der Anpassung der Modelle an die Daten zu vergleichen.

Schritt 4: Bestimmen, ob das Modell die Annahmen der Analyse erfüllt

Verwenden Sie die Residuendiagramme, um zu ermitteln, ob das Modell angemessen ist und die Annahmen der Analyse erfüllt. Wenn die Annahmen nicht erfüllt werden, ist das Modell u. U. nicht gut an die Daten angepasst, und Sie sollten beim Interpretieren der Ergebnisse vorsichtig sein.

Weitere Informationen zum Umgang mit Mustern in den Residuendiagrammen finden Sie unter Residuendiagramme für Faktoriellen Versuchsplan analysieren; klicken Sie dort auf den Namen des Residuendiagramms in der Liste am oberen Rand der Seite.

Diagramm der Residuen im Vergleich zu den Anpassungen

Die Muster in der folgenden Tabelle können darauf hinweisen, dass das Modell die Modellannahmen nicht erfüllt.
Muster Mögliche Bedeutung des Musters
Aufgefächerte oder ungleichmäßig gestreute Residuen für die angepassten Werte Nicht konstante Varianz
Krümmung Ein fehlender Term höherer Ordnung
Ein weit von null entfernt liegender Punkt Ein Ausreißer
Ein in x-Richtung weit von den anderen Punkten entfernter Punkt Ein einflussreicher Punkt

Verwenden Sie das Diagramm der Residuen im Vergleich zu den Anpassungen, um die Annahme zu überprüfen, dass die Residuen zufällig verteilt sind und eine konstante Varianz aufweisen. Im Idealfall sollten die Punkte zufällig auf beiden Seiten von null verteilt sein, und es sollten keine Muster in den Punkten erkennbar sein.

Diagramm der Residuen im Vergleich zur Reihenfolge

Verwenden Sie das Diagramm der Residuen im Vergleich zur Reihenfolge, um die Annahme zu überprüfen, dass die Residuen zufällig verteilt sind. Bei in chronologischer Reihenfolge angezeigten unabhängigen Residuen sind weder Trends noch Muster zu erkennen. Muster in den Punkten können darauf hinweisen, dass nahe beieinander liegende Residuen korrelieren und daher nicht unabhängig sind. Im Idealfall sollten die Residuen im Diagramm zufällig um die Mittellinie gestreut sein:
Wenn Sie ein Muster erkennen, untersuchen Sie die Ursache. Die folgenden Typen von Mustern können darauf hinweisen, dass die Residuen abhängig sind.
Trend
Shift
Zyklus

Wahrscheinlichkeitsnetz (Normal) für Residuen

Verwenden Sie das Wahrscheinlichkeitsnetz (Normal) der Residuen, um die Annahme zu überprüfen, dass die Residuen normalverteilt sind. Die Residuen im Wahrscheinlichkeitsnetz für Normalverteilung sollten ungefähr einer Geraden folgen.

Die Muster in der folgenden Tabelle können darauf hinweisen, dass das Modell die Modellannahmen nicht erfüllt.

Muster Mögliche Bedeutung des Musters
Keine Gerade Nicht-Normalverteilung
Ein Punkt weit entfernt von der Linie Ein Ausreißer
Sich verändernde Steigung Eine nicht identifizierte Variable