Hierbei sind αi, βj , (αβ)ij und εijk unabhängige Zufallsvariablen. Die Variablen sind normalverteilt mit dem Mittelwert null, und die Varianzen werden durch diese Formeln ausgedrückt:
Bei diesen Varianzen handelt es sich um die Varianzkomponenten. Testen Sie in diesem Fall die Hypothese, dass die Varianzkomponenten gleich null sind.
Für ein uneingeschränktes gemischtes Modell mit einem festen Faktor A und einem Zufallsfaktor B wird das Modell mit folgender Formel beschrieben:
Hierbei sind αi feste Effekte und βj, (αβ)ij sowie εijk nicht korrelierte Zufallsvariablen mit dem Mittelwert null und den folgenden Varianzen:
Bei diesen Varianzen handelt es sich um die Varianzkomponenten. Das Σα i = 0.
Diese Informationen beziehen sich auf balancierte Modelle. Informationen zu nicht balancierten bzw. komplexeren Modellen finden Sie in Montgomery1 und Neter2.
Die Formeln für das erwartete Mittel der Quadrate für ein uneingeschränktes gemischtes Modell mit einem festen Faktor A und einem Zufallsfaktor B lauten wie folgt:
Die allgemeinen Regeln zum Berechnen des erwarteten Mittels der Quadrate und Informationen zu nicht balancierten bzw. komplexeren Modellen finden Sie in Montgomery1 und Neter2.
Begriff | Beschreibung |
---|---|
b | Anzahl der Stufen in Faktor B |
a | Anzahl der Stufen in Faktor A |
n | Anzahl der Beobachtungen in den einzelnen Kombinationen der Faktorstufen |
σ2 | geschätzte Varianz des Modells |
geschätzte Varianz von A | |
geschätzte Varianz von B | |
geschätzte Varianz von AB | |
feste Effekte von A |
Jede F-Statistik stellt ein Verhältnis von Mitteln der Quadrate dar. Der Zähler ist das Mittel der Quadrate für den Term. Der Nenner wird so gewählt, dass sich der erwartete Wert des Mittels der Quadrate im Zähler vom erwarteten Wert des Mittels der Quadrate im Nenner nur durch den relevanten Effekt unterscheidet. Der Effekt für einen Zufallsterm wird durch die Varianzkomponente des Terms dargestellt. Der Effekt für einen festen Term wird durch die Summe der Quadrate der diesem Term entsprechenden Modellkomponenten dividiert durch seine Freiheitsgrade dargestellt. Daher weist eine hohe F-Statistik auf einen signifikanten Effekt hin.
Wenn alle Terme im Modell fest sind, ist der Nenner für jede F-Statistik das mittlere Fehlerquadrat (MSE). Für Modelle, die Zufallsterme enthalten, ist MSE hingegen nicht immer das richtige Mittel der Quadrate. Anhand des erwarteten Mittels der Quadrate (EMS) kann bestimmt werden, welches für den Nenner geeignet ist.
Quelle | Erwartetes Mittel der Quadrate für jeden Term |
---|---|
(1) Bildschirm | (4) + 2,0000(3) + Q[1] |
(2) Techniker | (4) + 2,0000(3) + 4,0000(2) |
(3) Bildschirm*Techniker | (4) + 2,0000(3) |
(4) Fehler | (4) |
Eine Zahl in Klammern gibt einen Zufallseffekt an, der dem neben der Quellennummer aufgelisteten Term zugeordnet ist. (2) stellt den Zufallseffekt von „Techniker“ dar, (3) den Zufallseffekt der Wechselwirkung „Bildschirm*Techniker“ und (4) den Zufallseffekt von „Fehler“. Das EMS für „Fehler“ ist der Effekt des Fehlerterms. Zudem ist das EMS für „Bildschirm*Techniker“ der Effekt des Fehlerterms zuzüglich des doppelten Effekts der Wechselwirkung „Bildschirm*Techniker“.
Zum Berechnen der F-Statistik für „Folie*Tech“ wird das Mittel der Quadrate für „Folie*Tech“ durch das Mittel der Quadrate des Fehlers dividiert, sodass sich der erwartete Wert des Zählers (EMS für Folie*Tech = (4) + 2.0000(3)) vom erwarteten Wert des Nenners (EMS für Fehler = (4)) nur durch den Effekt der Wechselwirkung (2,0000(3)) unterscheidet. Daher zeigt eine hohe F-Statistik eine signifikante Wechselwirkung „Bildschirm*Techniker“ an.
Eine Zahl mit Q[ ] gibt den festen Effekt für den Term an, der neben der Quellennummer aufgelistet ist. So ist Q[1] beispielsweise der feste Effekt von „Bildschirm“. Das EMS für „Bildschirm“ ist der Effekt des Fehlerterms zuzüglich des doppelten Effekts der Wechselwirkung „Bildschirm*Techniker“ plus ein konstantes Vielfaches des Effekts von „Bildschirm“. Q[1] ist gleich (b*n * sum((Koeffizienten für Stufen von „Bildschirm“)**2)) dividiert durch (a – 1), wobei a und b die Anzahl der Stufen von „Bildschirm“ und „Techniker“ sind und n die Anzahl der Replikationen angibt.
Zum Berechnen der F-Statistik für „Bildschirm“ wird das Mittel der Quadrate für „Bildschirm“ durch das Mittel der Quadrate für „Bildschirm*Techniker“ dividiert, so dass sich der erwartete Wert des Zählers (EMS für „Bildschirm“ = (4) + 2,0000(3) + Q[1]) vom erwarteten Wert des Nenners (EMS für „Bildschirm*Techniker“ = (4) + 2,0000(3)) nur durch den Effekt von „Bildschirm“ (Q[1]) unterscheidet. Daher weist eine hohe F-Statistik auf einen signifikanten Effekt von „Bildschirm“ hin.
In einem genauen F-Test für einen Term unterscheidet sich der erwartete Wert des Mittels der Quadrate für den Zähler vom erwarteten Wert des Mittels der Quadrate für den Nenner nur durch die Varianzkomponente bzw. den festen Faktor von Interesse.
Gelegentlich kann ein solches Mittel der Quadrate jedoch nicht berechnet werden. In einem solchen Fall verwendet Minitab ein Mittel der Quadrate, das zu einem annähernden F-Test führt, und zeigt ein „x“ neben dem p-Wert an, um anzugeben, dass der F-Test nicht genau ist.
Quelle | Erwartetes Mittel der Quadrate für jeden Term |
---|---|
(1) Zusatz | (4) + 1,7500(3) + Q[1] |
(2) See | (4) + 1,7143(3) + 5,1429(2) |
(3) Zusatz*See | (4) + 1,7500(3) |
(4) Fehler | (4) |
Die F-Statistik für „Zusatz“ ist das Mittel der Quadrate für „Zusatz“ dividiert durch das Mittel der Quadrate für die Wechselwirkung „Zusatz*See“. Wenn der Effekt für „Zusatz“ sehr klein ist, ist der erwartete Wert des Zählers gleich dem erwarteten Wert des Nenners. Dies ist ein Beispiel für einen genauen F-Test.
Beachten Sie jedoch, dass für einen sehr kleinen Effekt von „See“ kein Mittel der Quadrate vorliegt, bei dem der erwartete Wert des Zählers gleich dem erwarteten Wert des Nenners ist. Daher verwendet Minitab einen annähernden F-Test. In diesem Beispiel wird das Mittel der Quadrate für „See“ durch das Mittel der Quadrate für die Wechselwirkung „Zusatz*See“ dividiert. Dadurch wird ein erwarteter Wert des Zählers erhalten, der annähernd gleich dem des Nenners ist, wenn der Effekt von „See“ sehr klein ist.
Die korrigierten MS-Werte sind sehr klein, und damit ist keine ausreichende Genauigkeit zur Anzeige der F-Statistik und der p-Werte gegeben. Mögliche Problemumgehung: Multiplizieren Sie die Antwortspalte mit 10. Führen Sie anschließend dasselbe Regressionsmodell aus, wobei Sie jedoch diese neue Antwortspalte als Antwortvariable verwenden.
Das Multiplizieren der Werte der Antwortvariablen mit 10 wirkt sich nicht auf die F-Statistik und die p-Werte aus, die Minitab in der Ausgabe anzeigt. Die Position des Dezimalkommas in der übrigen Ausgabe ist jedoch betroffen, insbesondere die Spalten für die sequenzielle Summe der Quadrate, Kor SS, Kor MS, Anpassung, Standardfehler der Anpassungen und Residuen.
Jede F-Statistik stellt ein Verhältnis von Mitteln der Quadrate dar. Der Zähler ist das Mittel der Quadrate für den Term. Der Nenner wird so gewählt, dass sich der erwartete Wert des Mittels der Quadrate im Zähler vom erwarteten Wert des Mittels der Quadrate im Nenner nur durch den relevanten Effekt unterscheidet. Der Effekt für einen Zufallsterm wird durch die Varianzkomponente des Terms dargestellt. Der Effekt für einen festen Term wird durch die Summe der Quadrate der diesem Term entsprechenden Modellkomponenten dividiert durch seine Freiheitsgrade dargestellt. Daher weist eine hohe F-Statistik auf einen signifikanten Effekt hin.
Wenn alle Terme im Modell fest sind, ist der Nenner für jede F-Statistik das mittlere Fehlerquadrat (MSE). Für Modelle, die Zufallsterme enthalten, ist MSE hingegen nicht immer das richtige Mittel der Quadrate. Anhand des erwarteten Mittels der Quadrate (EMS) kann bestimmt werden, welches für den Nenner geeignet ist.
Quelle | Erwartetes Mittel der Quadrate für jeden Term |
---|---|
(1) Bildschirm | (4) + 2,0000(3) + Q[1] |
(2) Techniker | (4) + 2,0000(3) + 4,0000(2) |
(3) Bildschirm*Techniker | (4) + 2,0000(3) |
(4) Fehler | (4) |
Eine Zahl in Klammern gibt einen Zufallseffekt an, der dem neben der Quellennummer aufgelisteten Term zugeordnet ist. (2) stellt den Zufallseffekt von „Techniker“ dar, (3) den Zufallseffekt der Wechselwirkung „Bildschirm*Techniker“ und (4) den Zufallseffekt von „Fehler“. Das EMS für „Fehler“ ist der Effekt des Fehlerterms. Zudem ist das EMS für „Bildschirm*Techniker“ der Effekt des Fehlerterms zuzüglich des doppelten Effekts der Wechselwirkung „Bildschirm*Techniker“.
Zum Berechnen der F-Statistik für „Folie*Tech“ wird das Mittel der Quadrate für „Folie*Tech“ durch das Mittel der Quadrate des Fehlers dividiert, sodass sich der erwartete Wert des Zählers (EMS für Folie*Tech = (4) + 2.0000(3)) vom erwarteten Wert des Nenners (EMS für Fehler = (4)) nur durch den Effekt der Wechselwirkung (2,0000(3)) unterscheidet. Daher zeigt eine hohe F-Statistik eine signifikante Wechselwirkung „Bildschirm*Techniker“ an.
Eine Zahl mit Q[ ] gibt den festen Effekt für den Term an, der neben der Quellennummer aufgelistet ist. So ist Q[1] beispielsweise der feste Effekt von „Bildschirm“. Das EMS für „Bildschirm“ ist der Effekt des Fehlerterms zuzüglich des doppelten Effekts der Wechselwirkung „Bildschirm*Techniker“ plus ein konstantes Vielfaches des Effekts von „Bildschirm“. Q[1] ist gleich (b*n * sum((Koeffizienten für Stufen von „Bildschirm“)**2)) dividiert durch (a – 1), wobei a und b die Anzahl der Stufen von „Bildschirm“ und „Techniker“ sind und n die Anzahl der Replikationen angibt.
Zum Berechnen der F-Statistik für „Bildschirm“ wird das Mittel der Quadrate für „Bildschirm“ durch das Mittel der Quadrate für „Bildschirm*Techniker“ dividiert, so dass sich der erwartete Wert des Zählers (EMS für „Bildschirm“ = (4) + 2,0000(3) + Q[1]) vom erwarteten Wert des Nenners (EMS für „Bildschirm*Techniker“ = (4) + 2,0000(3)) nur durch den Effekt von „Bildschirm“ (Q[1]) unterscheidet. Daher weist eine hohe F-Statistik auf einen signifikanten Effekt von „Bildschirm“ hin.
In einem genauen F-Test für einen Term unterscheidet sich der erwartete Wert des Mittels der Quadrate für den Zähler vom erwarteten Wert des Mittels der Quadrate für den Nenner nur durch die Varianzkomponente bzw. den festen Faktor von Interesse.
Gelegentlich kann ein solches Mittel der Quadrate jedoch nicht berechnet werden. In einem solchen Fall verwendet Minitab ein Mittel der Quadrate, das zu einem annähernden F-Test führt, und zeigt ein „x“ neben dem p-Wert an, um anzugeben, dass der F-Test nicht genau ist.
Quelle | Erwartetes Mittel der Quadrate für jeden Term |
---|---|
(1) Zusatz | (4) + 1,7500(3) + Q[1] |
(2) See | (4) + 1,7143(3) + 5,1429(2) |
(3) Zusatz*See | (4) + 1,7500(3) |
(4) Fehler | (4) |
Die F-Statistik für „Zusatz“ ist das Mittel der Quadrate für „Zusatz“ dividiert durch das Mittel der Quadrate für die Wechselwirkung „Zusatz*See“. Wenn der Effekt für „Zusatz“ sehr klein ist, ist der erwartete Wert des Zählers gleich dem erwarteten Wert des Nenners. Dies ist ein Beispiel für einen genauen F-Test.
Beachten Sie jedoch, dass für einen sehr kleinen Effekt von „See“ kein Mittel der Quadrate vorliegt, bei dem der erwartete Wert des Zählers gleich dem erwarteten Wert des Nenners ist. Daher verwendet Minitab einen annähernden F-Test. In diesem Beispiel wird das Mittel der Quadrate für „See“ durch das Mittel der Quadrate für die Wechselwirkung „Zusatz*See“ dividiert. Dadurch wird ein erwarteter Wert des Zählers erhalten, der annähernd gleich dem des Nenners ist, wenn der Effekt von „See“ sehr klein ist.
Die korrigierten MS-Werte sind sehr klein, und damit ist keine ausreichende Genauigkeit zur Anzeige der F-Statistik und der p-Werte gegeben. Mögliche Problemumgehung: Multiplizieren Sie die Antwortspalte mit 10. Führen Sie anschließend dasselbe Regressionsmodell aus, wobei Sie jedoch diese neue Antwortspalte als Antwortvariable verwenden.
Das Multiplizieren der Werte der Antwortvariablen mit 10 wirkt sich nicht auf die F-Statistik und die p-Werte aus, die Minitab in der Ausgabe anzeigt. Die Position des Dezimalkommas in der übrigen Ausgabe ist jedoch betroffen, insbesondere die Spalten für die sequenzielle Summe der Quadrate, Kor SS, Kor MS, Anpassung, Standardfehler der Anpassungen und Residuen.