Verwenden Sie die Regressionsgleichung, um die Beziehung zwischen der Antwortvariablen und den Termen im Modell zu beschreiben. Die Regressionsgleichung ist eine algebraische Darstellung der Regressionslinie. Die Regressionsgleichung für das lineare Modell nimmt die folgende Form an: Y = b0 + b1x1. In der Regressionsgleichung steht Y für die Antwortvariable, b0 ist die Konstante bzw. der Schnittpunkt mit der y-Achse, b1 ist der geschätzte Koeffizient für den linearen Term (auch als Steigung der Linie bezeichnet), und x1 steht für den Wert des Terms.
Die Regressionsgleichung mit mehreren Termen weist die folgende Form auf:
y = b0 + b1x1 + b2x2 + ... + bkxk
Wenn das Modell sowohl stetige als auch kategoriale Variablen enthält, wird in der Tabelle der Regressionsgleichung möglicherweise eine Gleichung für jede Kombination von Stufen der kategorialen Variablen angezeigt. Um diese Gleichungen für die Prognose zu verwenden, müssen Sie entsprechend den Werten der kategorialen Variablen die richtige Gleichung auswählen und anschließend die Werte der stetigen Variablen einsetzen.
Wenn in der Tabelle der Regressionsgleichung nicht angegeben wird, ob es sich um kodierte oder nicht kodierte Einheiten handelt, liegen nicht kodierte Einheiten vor.
Interpretieren Sie die Koeffizienten bei einer Regressionsgleichung in kodierten Einheiten mit den kodierten Werten und nicht mit den natürlichen Einheiten. Weitere Informationen erhalten Sie unter „Alle Statistiken“ für die Koeffiziententabelle; klicken Sie dort auf „Kodierte Koeffizienten“.
Wenn in der Tabelle der Regressionsgleichung nicht angegeben wird, ob es sich um kodierte oder nicht kodierte Einheiten handelt, liegen nicht kodierte Einheiten vor.
Interpretieren Sie die Koeffizienten bei einer Regressionsgleichung in nicht kodierten Einheiten mit den natürlichen Einheiten jeder Variablen. Weitere Informationen finden Sie unter „Regressionsgleichung“.
Die kodierten Koeffizienten können in der Koeffiziententabelle eingesehen werden.