Interpretieren der wichtigsten Ergebnisse für Randomisierungstest für Anteil, 1 Stichprobe

Führen Sie die folgenden Schritte aus, um einen Randomisierungstest für den Anteil bei einer Stichprobe zu interpretieren. Zu den wichtigsten Ausgaben zählen das Histogramm und der p-Wert.

Schritt 1: Untersuchen der Form Ihrer Bootstrap-Verteilung

Verwenden Sie ein Histogramm, um die Form Ihrer Bootstrap-Verteilung zu untersuchen. Die Bootstrap-Verteilung ist die Verteilung der Mittelwerte aus jeder Stichprobenwiederholung. Die Bootstrap-Verteilung sollte normalverteilt erscheinen. Wenn die Bootstrap-Verteilung nicht normalverteilt ist, sind die Ergebnisse nicht vertrauenswürdig.
50 Stichprobenwiederholungen
1000 Stichprobenwiederholungen

Die Verteilung lässt sich im Allgemeinen leichter mit einer höheren Anzahl von Stichprobenwiederholungen bestimmen. In diesen Daten ist die Verteilung für 50 Stichprobenwiederholungen beispielsweise mehrdeutig. Bei 1000 Stichprobenwiederholungen sieht die Form annähernd normalverteilt aus.

In diesem Histogramm scheint die Bootstrap-Verteilung normalverteilt zu sein.

Schritt 2: Bestimmen, ob die Testergebnisse statistisch signifikant sind

Um zu ermitteln, ob die Differenz zwischen dem Anteil der Grundgesamtheit und dem hypothetischen Anteil statistisch signifikant ist, vergleichen Sie den p-Wert mit dem Signifikanzniveau. In der Regel ist ein Signifikanzniveau (als α oder Alpha bezeichnet) von 0,05 gut geeignet. Ein Signifikanzniveau von 0,05 gibt ein Risiko von 5 % an, dass auf eine vorhandene Differenz geschlossen wird, während tatsächlich keine vorhanden ist.
p-Wert ≤ α: Die Differenz zwischen den Anteilen ist statistisch signifikant (H0 verwerfen)
Wenn der p-Wert kleiner oder gleich dem Signifikanzniveau ist, weisen Sie die Nullhypothese zurück. Sie können schlussfolgern, dass die Differenz zwischen dem Anteil der Grundgesamtheit und dem hypothetischen Anteil statistisch signifikant ist. Verwenden Sie Bootstrapping für Funktion, 1 Stichprobe, um ein Konfidenzintervall zu berechnen und zu bestimmen, ob die Differenz praktisch signifikant ist. Weitere Informationen finden Sie unter Statistische und praktische Signifikanz.
p-Wert > α: Die Differenz zwischen den Anteilen ist statistisch nicht signifikant (H0 nicht verwerfen)
Wenn der p-Wert größer als das Signifikanzniveau ist, weisen Sie die Nullhypothese nicht zurück. Es liegen nicht genügend Anzeichen für die Schlussfolgerung vor, dass die Differenz zwischen dem Anteil der Grundgesamtheit und dem hypothetischen Anteil statistisch signifikant ist.

Randomisierungstest für Anteil, 1 Stichprobe

Histogramm des Randomisierungstests

Beobachtete Stichprobe N Anteil 200 0,620000
Randomisierungstest Nullhypothese H₀: p = 0,5 Alternativhypothese H₁: p > 0,5 Anzahl von Stichprobenwiederholungen Durchschnitt p-Wert 1000 0,49942 0,002
Wichtigste Ergebnisse: p-Wert

In diesen Ergebnissen besagt die Alternativhypothese, dass der Anteil der Leser, die eine PlayStation-Konsole besitzen, größer als 0,5 ist. Da der p-Wert 0,002 beträgt und somit niedriger als das Signifikanzniveau von 0,05 ist, wird entschieden, die Nullhypothese zurückzuweisen und zu folgern, dass der Anteil der Leser, die eine PlayStation-Konsole besitzen, größer als 0,5 ist.

Durch Ihre Nutzung dieser Website stimmen Sie zu, dass Cookies verwendet werden. Cookies dienen zu Analysezwecken und zum Bereitstellen personalisierter Inhalte.  Lesen Sie unsere Richtlinien