Regressionstabelle für Regressionsmodell anpassen

Hier finden Sie Definitionen und Anleitungen zur Interpretation für jede Statistik in der Regressionstabelle.

Kodierung der kategorialen Prädiktoren

Minitab kann entweder das Kodierungsschema (0, 1) oder das Kodierungsschema (−1, 0, +1) verwenden, um kategoriale Variablen in das Modell einzubinden. Das Schema (0, 1) ist das Standardschema für die Regressionsanalyse, während das Schema (−1, 0, +1) standardmäßig für die ANOVA und die Versuchsplanung (DOE) verwendet wird. Durch die Wahl zwischen diesen beiden Schemas wird die statistische Signifikanz der kategorialen Variablen nicht verändert. Das Kodierungsschema ändert jedoch die Koeffizienten und beeinflusst, wie diese interpretiert werden.

Interpretation

Prüfen Sie das angezeigte Kodierungsschema, um sicherzustellen, dass die Analyse wie gewünscht durchgeführt wurde. Interpretieren Sie die Koeffizienten für die kategorialen Variablen wie folgt:

  • Beim Kodierungsschema (0, 1) stellen die einzelnen Koeffizienten die Differenz zwischen den einzelnen Stufenmittelwerten und dem Mittelwert der Referenzstufe dar. Der Koeffizient für die Referenzstufe wird in der Koeffiziententabelle nicht angezeigt.
  • Beim Kodierungsschema (−1, 0, +1) stellen die einzelnen Koeffizienten die Differenz zwischen den einzelnen Stufenmittelwerten und dem Gesamtmittelwert dar.

Standardisierung der stetigen Prädiktoren

Wenn Sie festlegen, dass die stetigen Prädiktoren im Modell standardisiert werden sollen, stellt Minitab in der Tabelle „Standardisierung der stetigen Prädiktoren“ Details zur Methode bereit.

Im Allgemeinen standardisieren Sie Variablen, um diese zu zentrieren und/oder zu skalieren. Beim Zentrieren von Variablen verringern Sie die Multikollinearität, die auf Wechselwirkungs- und Polynomialterme zurückzuführen ist; damit verbessern Sie die Genauigkeit der Schätzwerte für die Koeffizienten. Beim Skalieren von Variablen konvertiert Minitab meist die unterschiedlichen Skalen von Variablen in eine gemeinsame Skala, wodurch Sie die Größe der Koeffizienten vergleichen können.

Interpretation

Vergewissern Sie sich anhand der Tabelle für die Standardisierungsmethode, dass die Analyse wie gewünscht durchgeführt wurde. Je nach ausgewählter Methode müssen Sie die Interpretation der Koeffizienten wie folgt anpassen:
Kodierung von -1 bzw. +1 für tiefe bzw. hohe Stufe festlegen
Bei dieser Methode werden die Variablen sowohl zentriert als auch skaliert. Diese Methode wird in der Versuchsplanung (DOE) von Minitab verwendet. Die Koeffizienten stellen die Änderung des Mittelwerts der Antwortvariablen bei den angegebenen Hoch- und Tief-Werten dar.
Mittelwert subtrahieren, dann durch Standardabweichung dividieren
Bei dieser Methode werden die Variablen sowohl zentriert als auch skaliert. Jeder Koeffizient stellt die erwartete Änderung der Antwortvariablen bei einer Änderung der Variablen um eine Standardabweichung dar.
Mittelwert subtrahieren
Bei dieser Methode werden die Variablen zentriert. Jeder Koeffizient stellt die erwartete Änderung der Antwortvariablen bei einer Änderung der Variablen um eine Einheit dar, wobei die ursprüngliche Messskala verwendet wird. Wenn Sie den Mittelwert subtrahieren, ist der Koeffizient für die Konstante ein Schätzwert des Mittelwerts der Antwortvariablen, wenn alle Prädiktoren auf ihre Mittelwerte festgelegt sind.
Durch Standardabweichung dividieren
Bei dieser Methode werden die Variablen skaliert. Jeder Koeffizient stellt die erwartete Änderung der Antwortvariablen bei einer Änderung der Variablen um eine Standardabweichung dar.
Angegebenen Wert subtrahieren, dann durch einen weiteren Wert dividieren
Die Auswirkung und Interpretation dieser Methode hängen von den von Ihnen eingegebenen Werten ab.

Geschätztes λ

Wenn Sie eine Box-Cox-Transformation ausführen, ist das geschätzte λ (Lambda) der optimale Wert zum Erzeugen von transformierten Werten der Antwortvariablen, die normalverteilt sind. In der Standardeinstellung verwendet Minitab für Lambda einen gerundeten Wert.

Interpretation

Lambda ist der Exponent, mit dem Minitab die Daten der Antwortvariablen transformiert. Bei Lambda = –1 werden alle Werte der Antwortvariablen (y) wie folgt transformiert: –y–1 = –1/y. Wenn Lambda gleich 0 ist, wird dadurch der natürliche Logarithmus von y und nicht y0 ausgedrückt.

95%-KI für λ

Die Konfidenzintervalle für λ (Lambda) sind Bereiche von Werten, die wahrscheinlich den tatsächlichen Wert von λ für die vollständige Grundgesamtheit enthalten, aus der die Stichprobe gezogen wurde.

Da die Stichproben zufällig sind, ist es unwahrscheinlich, dass zwei Stichproben aus einer Grundgesamtheit identische Konfidenzintervalle ergeben. Wenn Sie jedoch viele Zufallsstichproben ziehen, enthält ein gewisser Prozentsatz der resultierenden Konfidenzintervalle den unbekannten Parameter der Grundgesamtheit. Der Prozentsatz dieser Konfidenzintervalle, die den Parameter enthalten, stellt das Konfidenzniveau des Intervalls dar.

Interpretation

Verwenden Sie das Konfidenzintervall, um den Schätzwert von Lambda für Ihre Stichprobe zu beurteilen.

Bei einem 95%-Konfidenzniveau können Sie sich beispielsweise zu 95 % sicher sein, dass das Konfidenzintervall den Wert von Lambda für die Grundgesamtheit enthält. Anhand des Konfidenzintervalls können Sie die praktische Signifikanz Ihrer Ergebnisse beurteilen. Bestimmen Sie anhand Ihrer Fachkenntnisse, ob das Konfidenzintervall Werte umfasst, die in der jeweiligen Situation von praktischer Signifikanz sind. Wenn das Intervall zu breit und damit nicht hilfreich ist, erwägen Sie, den Stichprobenumfang zu vergrößern.

Gerundetes λ

In der Standardeinstellung rundet Minitab das optimale λ (Lambda) auf die nächste halbe Zahl, da diese Werte einer intuitiveren Transformation entsprechen. Wenn Sie den optimalen Wert für die Transformation verwenden möchten, wählen Sie Extras > Optionen > Lineare Modelle > Darstellung der Ergebnisse aus.

Interpretation

Im Folgenden sind gängige gerundete Werte von Lambda und die damit erreichten Transformationen der Antwortvariablen aufgeführt.
Lambda Transformation
-2 −Y-2 = −1 / Y2
-1 −Y-1 = −1 / Y
-0,5 −Y-0,5 = −1 / (Quadratwurzel von Y)
0 Log (Y)
0,5 Y0,5 = Quadratwurzel von Y
1 Y
2 Y2
Durch Ihre Nutzung dieser Website stimmen Sie zu, dass Cookies verwendet werden. Cookies dienen zu Analysezwecken und zum Bereitstellen personalisierter Inhalte.  Lesen Sie unsere Richtlinien