一致对和不一致对用于描述观测值对之间的关系。为计算一致对和不一致对,数据将被当作顺序数据处理,因此顺序数据应该可以适用于您的应用程序。一致和不一致对的数量用于计算 Kendall 的 tau,该系数用于度量两个顺序变量之间的关联。
用于计算一致对和不一致对的过程可比较有关相同两项的两个变量(例如,X 和 Y)的分类。如果分类方向相同,则对是一致的。例如,X 和 Y 对项 1 的评分都高于对项 2 的评分。如果分类方向不相同,则对是不一致的。例如,X 对项 1 的评分高于对项 2 的评分,而 Y 对项 1 的评分低于对项 2 的评分。
例如,假设一群朋友在玩飞镖。他们将自己的技能水平定为初级、中级或专业级,然后按命中率(低、中和高)收集数据。
技能 | 低 | 中 | 高 |
---|---|---|---|
初级 | 10 | 2 | 1 |
中级 | 3 | 5 | 5 |
专业级 | 3 | 7 | 3 |
如果受试对象的两个变量都较高,则这对观测值是一致的。如果受试对象的一个变量较高而另一个变量较低,则这对观测值是不一致的。