样本数量 (N) 是样本中的观测值总数。
均值使用表示数据中心的单个值来汇总样本值。均值是数据的平均值,即所有观测值之和除以观测值的个数。
The mean of each sample is an estimate of the population mean of each sample.
标准差是离差的最常用度量,即数据从均值展开的程度。符号 σ(西格玛)通常用于表示总体的标准差,而 s 用于表示样本的标准差。对某一过程而言随机或合乎自然规律的变异通常称为噪声。对某一过程而言随机或合乎自然规律的变异通常称为噪声。
标准差与数据采用相同的单位。
使用标准差可以确定数据从均值扩散的程度。 标准差值越大,数据越分散。 对于正态分布来说,好的经验法则是大约 68% 的值位于均值的一个标准差范围内,95% 的值位于两个标准差范围内,99.7% 的值位于三个标准差范围内。
每个样本的标准差是对每个总体标准差的估计值。 值越大,置信区间就越不精确(越宽),检验的性能也越低。
均值的标准误(SE 均值)估计样本均值之间的变异性,样本均值是在对相同总体重复抽样的情况下获得的。而均值的标准误估计样本之间的变异性,标准差度量单个样本内的变异性。
例如,根据 312 个交货时间的随机样本,得到平均交货时间为 3.80 天,标准差为 1.43 天。这些数字产生的均值标准误为 0.08 天(1.43 除以 312 的平方根)。如果从相同总体中抽取大小相同的多个随机样本,则这些不同样本均值的标准差将大约为 0.08 天。
使用均值的标准误可以确定样本均值对总体均值的估计精确度。
均值的标准误越小,对总体均值的估计越精确。通常,标准差越大,均值的标准误就越大,对总体均值的估计也越不精确。样本越大,均值的标准误就越小,对总体均值的估计也越精确。
Minitab 使用均值的标准误来计算置信区间。
差值是您要估计的总体均值之间的未知差值。Minitab 指出从哪个总体均值中减去另一个总体均值。
差值是两个样本的均值之间的差值。
由于差值基于样本数据而不是整个总体,因此样本差值通常不等于总体差值。使用差值的置信区间可以更好地估计总体差值。
置信区间提供总体差值的可能值范围。由于样本的随机性,来自总体的两个样本不可能生成相同的置信区间。但是如果将样本重复许多次,则所获得的特定百分比的置信区间或限值会包含未知的总体差值。这些包含差值的置信区间或限值的百分比是区间的置信水平。例如,95% 置信水平表明,如果从总体中随机抽取 100 个样本,则大约 95 个样本将产生包含总体差值的区间。
上限定义可能大于总体差值的值。下限定义可能小于总体差值的值。
置信区间有助于评估结果的实际意义。使用您的专业知识可以确定置信区间是否包括对您的情形有实际意义的值。如果区间因太宽而毫无用处,请考虑增加样本数量。有关更多信息,请转到获得更加精确的置信区间的方法。
差值 | 差值的 95% 置信区间 |
---|---|
21.00 | (14.22, 27.78) |
在这些结果中,医院评分的总体均值之差的估计值为 21。总体均值之差介于 14.22 和 27.78 之间的可信度为 95%。
在输出中,原假设和备择假设可帮助您验证是否为检验差值输入了正确的值。
T 值是 t 检验统计量的观测值,它度量观测到的样本统计量与假设总体参数之间的差值,以标准误为单位。
可以通过将 t 值与 t 分布的临界值进行比较来确定是否要否定原假设。但是,使用检验的 p 值做出相同的决定通常更实际且更方便。
为了确定是否要否定原假设,请将 t 值与临界值进行比较。在假定等方差时,对于双侧检验,临界值是 tα/2, n+m–2,而对于单侧检验,临界值是 tα, n+m–2。在无法假定等方差时,对于双侧检验,临界值是 tα/2, r,对于单侧检验,临界值是 tα, r,其中 r 是自由度。对于双侧检验,如果 t 值的绝对值大于临界值,则否定原假设。否则,无法否定原假设。您可以在 Minitab 中计算临界值,也可以在大多数统计书籍的 t 分布表中查找临界值。有关更多信息,请转到使用逆累积分布函数 (ICDF),然后单击“使用 ICDF 计算临界值”。
P 值是一个概率,用来度量否定原假设的证据。P 值越小,否定原假设的证据越充分。
使用 p 值可确定总体均值的差值在统计意义上是否显著。
自由度 (DF) 指示数据提供的信息量,您可以使用这些信息来估计未知参数的值并计算这些估计值的变异性。对于双样本 t 检验,自由度由样本中的观测值个数来确定,同时还取决于能否假设方差相等。
Minitab 使用自由度来确定检验统计量。自由度由样本数量确定。增加样本数量可提供有关总体的更多信息,从而增加自由度。
合并标准差是对两个样本的公共标准差的估计值。合并标准差是所有数据点在其组均值(不是总体均值)附近的标准差。组越大,对合并标准差的总体估计值的影响也会按比例增加。
标准差用于计算置信区间和 p 值。
标准差值越大,数据越分散。 值越大,置信区间就越不精确(越宽),检验的性能也越低。
组 | 均值 | 标准差 | N |
---|---|---|---|
1 | 9.7 | 2.5 | 50 |
2 | 17.3 | 6.8 | 200 |
第一个组 (n=50) 的标准差为 2.5。第二个组更大 (n=200),其标准差也更大 (6.8)。由于合并标准差使用加权平均数,因此它的值更接近较大组的标准差。如果您使用的是简单平均数,则这两个组的效应将相等。
单值图显示每个样本中的单个值。通过单值图,可以很容易地比较样本。每个圆形表示一个观测值。当您具有的观测值相对较少,以及需要评估每个观测值的效果时,单值图尤其有用。
可使用单值图检查数据的散布,以及确定任何可能的异常值。 当样本数量小于 50 时,单值图具有最佳状态。
检查数据的散布以确定数据看上去是否偏斜。当数据偏斜时,大多数数据位于图形的高或低侧。通常情况下,在直方图或箱线图中最易于检测偏度。
如果您的样本小(小于 15 个值),严重偏斜的数据可影响 p 值的有效性。如果您的数据严重偏斜,并且样本小,请考虑增大样本数量。
异常值,是远离其他数据值的数据值,可以显著影响您的分析结果。通常情况下,在箱线图上最容易识别异常值。
尝试确定导致任何异常值的原因。更正任何数据输入错误或测量误差。考虑删除异常、单次事件(也称为特殊原因)的数据值。然后,重新执行分析。有关更多信息,请转到 标识异常值。
箱线图提供了每个样本分布的图形汇总。通过箱线图,可以方便地比较样本的形状、集中趋势和变异性。
可使用箱线图检查数据的散布,以及确定任何可能的异常值。 当样本数量大于 20 时,箱线图具有最佳状态。
检查数据的散布以确定数据看上去是否偏斜。当数据偏斜时,大多数数据位于图形的高或低侧。通常情况下,在直方图或箱线图中最易于检测偏度。
如果您的样本小(小于 15 个值),严重偏斜的数据可影响 p 值的有效性。如果您的数据严重偏斜,并且样本小,请考虑增大样本数量。
异常值,是远离其他数据值的数据值,可以显著影响您的分析结果。通常情况下,在箱线图上最容易识别异常值。
尝试确定导致任何异常值的原因。更正任何数据输入错误或测量误差。考虑删除异常、单次事件(也称为特殊原因)的数据值。然后,重新执行分析。有关更多信息,请转到 标识异常值。