非参数分布分析(右删失)的多种失效模式分析(Kaplan-Meier 估计法)

变量特征 – 多种失效模式分析(Kaplan-Meier 估计法)

均值(MTTF,平均故障时间间隔)和中位数是分布中心的度量。IQR 是分布散布的度量。

示例输出

变量: 周期
失效模式: 故障 = 中断

删失

删失信息计数
未删失值25
右删失值40
非参数估计

变量的特征



95.0% 正态置信区间



均值(MTTF)标准误下限上限下四分位数中位数上四分位数四分位间距
789.41282.1172628.466950.359503.88729.31055.45551.57
变量: 周期
失效模式: 故障 = 障碍

删失

删失信息计数
未删失值40
右删失值25
非参数估计

变量的特征



95.0% 正态置信区间



均值(MTTF)标准误下限上限下四分位数中位数上四分位数四分位间距
690.936101.916491.185890.68789.38257.47**
变量: 周期
失效模式: 故障 = 中断, 障碍

删失

删失信息计数
未删失值65
非参数估计

变量的特征



95.0% 正态置信区间



均值(MTTF)标准误下限上限下四分位数中位数上四分位数四分位间距
377.00650.6908277.654476.35889.38195.94547.25457.87

解释

对于洗碗机数据,估计的中位数失效时间是:
  • 折断为 729.3 个循环
  • 阻塞为 257.47 个循环
  • 折断或阻塞为 195.94 个循环

要最大化整体产品可靠性,工程师应当将改进工作集中在减少喷水臂阻塞上。

Kaplan-Meier 估计 – 多种失效模式分析(Kaplan-Meier 估计法)

生存概率是指产品在特定时间之前能够使用的概率。使用这些值可确定产品是否符合可靠性要求,或者确定哪些失效模式会影响整体可靠性。

示例输出

变量: 周期
失效模式: 故障 = 中断

Kaplan-Meier 估计






95.0% 正态置信区间
时间摘录 (Time)故障数失效数生存概率标准误下限上限
98.044510.9777780.02197390.9347101.00000
141.903710.9513510.03371330.8852741.00000
201.783210.9216220.04385080.8356761.00000
285.382910.8898420.05260910.7867300.99295
292.052710.8568840.06010360.7390840.97469
378.102510.8226090.06676100.6917600.95346
413.052410.7883340.07224400.6467380.92993
503.882020.7095000.08381030.5452350.87377
508.441810.6700840.08793600.4977320.84244
547.251710.6306670.09117040.4519760.80936
650.181510.5886230.09429000.4038170.77343
669.181410.5465780.09647460.3574910.73566
729.221310.5045340.09778690.3128750.69619
729.301210.4624890.09826190.2698990.65508
735.901110.4204450.09791170.2285410.61235
843.601010.3784000.09672740.1888180.56798
941.05910.3363560.09467770.1507910.52192
968.55810.2943110.09170460.1145740.47405
1046.52710.2522670.08771420.0803500.42418
1055.45610.2102220.08255920.0484090.37204
1202.70410.1576670.07684780.0070480.30829
1221.00310.1051110.06682880.0000000.23609
1514.70210.0525560.04997570.0000000.15051
1740.75110.0000000.00000000.0000000.00000
变量: 周期
失效模式: 故障 = 障碍

Kaplan-Meier 估计






95.0% 正态置信区间
时间摘录 (Time)故障数失效数生存概率标准误下限上限
7.146510.9846150.01526580.9546951.00000
9.246410.9692310.02141980.9272491.00000
10.026310.9538460.02602470.9028391.00000
21.276210.9384620.02980750.8800400.99688
23.106110.9230770.03305150.8582970.98786
23.196010.9076920.03590310.8373240.97806
26.785910.8923080.03844970.8169480.96767
27.815810.8769230.04074860.7970570.95679
41.825710.8615380.04283960.7775740.94550
43.895610.8461540.04475190.7584420.93387
47.875510.8307690.04650750.7396160.92192
51.705410.8153850.04812360.7210640.90971
55.595310.8000000.04961390.7027590.89724
63.125210.7846150.05098930.6846780.88455
63.205110.7692310.05225890.6668050.87166
69.345010.7538460.05343030.6491250.85857
89.384910.7384620.05450990.6316240.84530
90.634810.7230770.05550280.6142930.83186
91.284710.7076920.05641380.5971230.81826
94.354610.6923080.05724680.5801060.80451
99.334410.6765730.05806780.5627630.79038
99.444310.6608390.05881040.5455730.77611
100.234210.6451050.05947780.5285310.76168
112.044110.6293710.06007220.5116310.74711
122.404010.6136360.06059600.4948700.73240
137.723910.5979020.06105080.4782450.71756
139.723810.5821680.06143830.4617510.70258
150.153610.5659970.06182330.4448250.68717
155.433510.5498250.06213600.4280410.67161
181.603410.5336540.06237730.4113970.65591
195.943310.5174830.06254820.3948900.64007
203.223110.5007900.06271850.3778640.62372
257.473010.4840970.06281010.3609910.60720
290.112810.4668070.06290140.3435230.59009
321.202610.4488530.06299230.3253910.57232
427.352310.4293380.06320430.3054600.55322
437.292210.4098230.06327250.2858110.53383
455.872110.3903070.06319750.2664420.51417
596.671610.3659130.06378220.2409020.49092
1149.66510.2927300.08299510.1300630.45540
变量: 周期
失效模式: 故障 = 中断, 障碍

Kaplan-Meier 估计






95.0% 正态置信区间
时间摘录 (Time)故障数失效数生存概率标准误下限上限
7.146510.9846150.01526580.9546951.00000
9.246410.9692310.02141980.9272491.00000
10.026310.9538460.02602470.9028391.00000
21.276210.9384620.02980750.8800400.99688
23.106110.9230770.03305150.8582970.98786
23.196010.9076920.03590310.8373240.97806
26.785910.8923080.03844970.8169480.96767
27.815810.8769230.04074860.7970570.95679
41.825710.8615380.04283960.7775740.94550
43.895610.8461540.04475190.7584420.93387
47.875510.8307690.04650750.7396160.92192
51.705410.8153850.04812360.7210640.90971
55.595310.8000000.04961390.7027590.89724
63.125210.7846150.05098930.6846780.88455
63.205110.7692310.05225890.6668050.87166
69.345010.7538460.05343030.6491250.85857
89.384910.7384620.05450990.6316240.84530
90.634810.7230770.05550280.6142930.83186
91.284710.7076920.05641380.5971230.81826
94.354610.6923080.05724680.5801060.80451
98.044510.6769230.05800510.5632350.79061
99.334410.6615380.05869150.5465050.77657
99.444310.6461540.05930870.5299110.76240
100.234210.6307690.05985870.5134480.74809
112.044110.6153850.06034340.4971140.73366
122.404010.6000000.06076440.4809040.71910
137.723910.5846150.06112290.4648170.70441
139.723810.5692310.06142000.4488500.68961
141.903710.5538460.06165670.4330010.67469
150.153610.5384620.06183360.4172700.65965
155.433510.5230770.06195130.4016550.64450
181.603410.5076920.06201000.3861550.62923
195.943310.4923080.06201000.3707700.61385
201.783210.4769230.06195130.3555010.59835
203.223110.4615380.06183360.3403470.58273
257.473010.4461540.06165670.3253090.56700
285.382910.4307690.06142000.3103880.55115
290.112810.4153850.06112290.2955860.53518
292.052710.4000000.06076440.2809040.51910
321.202610.3846150.06034340.2663440.50289
378.102510.3692310.05985870.2519100.48655
413.052410.3538460.05930870.2376030.47009
427.352310.3384620.05869150.2234280.45349
437.292210.3230770.05800510.2093890.43676
455.872110.3076920.05724680.1954910.41989
503.882020.2769230.05550280.1681400.38571
508.441810.2615380.05450990.1547010.36838
547.251710.2461540.05343030.1414320.35088
596.671610.2307690.05225890.1283440.33319
650.181510.2153850.05098930.1154470.31532
669.181410.2000000.04961390.1027590.29724
729.221310.1846150.04812360.0902950.27894
729.301210.1692310.04650750.0780780.26038
735.901110.1538460.04475190.0661340.24156
843.601010.1384620.04283960.0544970.22243
941.05910.1230770.04074860.0432110.20294
968.55810.1076920.03844970.0323320.18305
1046.52710.0923080.03590310.0219390.16268
1055.45610.0769230.03305150.0121430.14170
1149.66510.0615380.02980750.0031170.11996
1202.70410.0461540.02602470.0000000.09716
1221.00310.0307690.02141980.0000000.07275
1514.70210.0153850.01526580.0000000.04531
1740.75110.0000000.00000000.0000000.00000

解释

对于洗碗机数据,生存概率如下所示:
  • 95%(或 0.951351)的喷水臂在至少 141.90 个循环之后没有折断
  • 95%(或 0.953846)的喷水臂在至少 10.02 个循环之后没有阻塞
  • 95%(或 0.953846)的喷水臂在至少 10.02 个循环之后没有出现这两种故障

要最大程度地提高洗碗机的可靠性,工程师应集中于喷水臂的阻塞问题上。