拟合值也称为拟合或。拟合值是对指定预测变量值的平均响应的点估计。预测变量值也称为 x 值。
拟合值是通过将数据集内每个观测值的特定 x 值输入到模型方程中来计算的。
例如,如果方程为 y = 5 + 10x,则 x 值 2 的拟合值为 25 (25 = 5 + 10(2))。
其拟合值与观测值显著不同的观测值可能是异常值。具有异常预测变量值的观测值可能是有影响的观测值。如果 Minitab 确定数据包含异常值或有影响的值,则输出中会包含“异常观测值的拟合值与诊断”表,此表可确定这些观测值。Minitab 标记的异常观测值未能很好地遵循建议的回归方程。但是,预计您将得到一些异常观测值。例如,基于较大标准化残差的标准,因为具有较大的标准化残差,预计将标记约 5% 的观测值。有关异常值的更多信息,请转到异常观测值。
拟合值标准误(拟合值 SE)用于估计指定变量设置的估计平均响应中的变异。将使用拟合值标准误来计算平均响应的置信区间。标准误始终为非负值。
使用拟合值标准误可度量平均响应估计值的精确度。标准误越小,预测平均响应越精确。例如,一位分析人员设计了一个用于预测交货时间的模型。对于一组变量设置,该模型预测平均交货时间为 3.80 天。这些设置的拟合值标准误为 0.08 天。对于第二组变量设置,模型生成了相同的平均交货时间,但是拟合值标准误为 0.02 天。该分析人员可以确信:第二组变量设置的平均交货时间更接近 3.80 天。
您可以将拟合值标准误与拟合值结合使用,从而创建平均响应的置信区间。例如,根据自由度的数量,95% 置信区间将大约从预测均值上方和下方展开两个标准误。对于交货时间,当标准误为 0.08 时,预测均值 3.80 天的 95% 置信区间为 (3.64, 3.96) 天。总体均值在此范围内的置信度为 95%。当标准误为 0.02 时,95% 置信区间为 (3.76, 3.84) 天。第二组变量设置的置信区间更窄,因为其标准误较小。
在指定的预测变量设置条件下,拟合值的置信区间为均值响应提供可能值的范围。
使用置信区间为变量的观测值评估拟合值的估计值。
例如,对于 95% 置信区间,置信区间包含模型中指定变量值的总体均值的可信度为 95%。该置信区间有助于评估结果的实际意义。使用您的专业知识可以确定置信区间是否包括对您的情形有实际意义的值。置信区间越宽,未来值的平均值的可信度越低。如果区间因太宽而毫无用处,请考虑增加样本数量。
预测区间是在指定的预测变量设置条件下,可能包含预测变量值的一个未来响应变量的范围。
例如,一家家具生产厂的材料工程师开发了一个简单回归模型来根据刨花板的密度预测其刚度。该工程师验证模型是否符合分析假定。然后,分析人员使用该模型预测刚度。
回归方程预测新观测值的硬度为 66.995,预测区间为 [50, 85]。虽然该观测值的硬度不太可能就是 66.995,但预测区间表明,工程师认为实际值介于 50 与 85 之间的置信度为 95%。
预测区间总是宽于对应的置信区间,这是因为预测单个响应比预测多个响应的均值具有更大的不确定性。