解释最佳子集回归的所有统计量

请查找定义和解释指导,了解随最佳子集回归提供的每个统计量。

变量数

变量数表示每个模型中所包含的预测变量数。对于各个预测变量数,默认情况下,Minitab 会选择两个具有最大 R2 值的模型。表格的右侧表示哪些预测变量在用“X”符号标注的模型中。

响应为 热通量

变量R-SqR-Sq (调整)R-Sq(预测)Mallows CpS



172.171.066.938.512.328      X 
139.437.126.3112.718.154X       
285.984.881.49.18.9321    XX 
282.080.674.217.810.076      XX
387.485.979.07.68.5978  XXX 
386.584.981.49.78.9110X  XX 
489.187.380.65.88.1698XXXX 
488.086.079.38.28.5550X  XXX
589.987.778.86.08.0390XXXXX

R-sq

R2 是由模型解释的响应中的变异百分比。它由 1 减去误差平方和(未由模型解释的变异)与平方总和(模型的总变异)之比计算得出。

解释

使用 R2 来确定模型与数据的拟合优度。R2 值越高,模型拟合数据的优度越高。R2 始终介于 0% 和 100% 之间。

您可以使用拟合线图以图形的方式说明不同的 R2 值。第一个图说明了解释响应中 85.5% 变异的简单回归模型。第二个图说明了解释响应中 22.6% 变异的模型。模型解释的变异越多,数据点距离拟合回归线越近。从理论上讲,如果模型可以解释 100% 的变异,则拟合值将始终等于观测值,并因此所有数据点都将落于拟合线上。但是,即便 R2 为 100%,模型也不需要准确地预测新观测值。
当解释 R2 值时,请考虑以下问题:
  • 如果向模型添加其他预测变量,则 R2 会始终增加。例如,最佳的 5 预测变量模型的 R2 始终比最佳的 4 预测变量模型的高。因此,比较相同大小的模型时 R2 最有效。

  • 样本数量较小则不能提供对于响应变量和预测变量之间关系强度的精确估计。如果需要 R2 更为精确,则应当使用较大的样本(通常为 40 或更多)。

  • 拟合优度统计量只是模型拟合数据优度的一种度量。即使模型具有合意的值,您也应当检查残差图,以验证模型是否符合模型假设。

R-sq(调整)

调整的 R2 是由模型解释的响应中变异的百分比,相对于观测值数,已调整了模型中的预测变量数。调整的 R2 是用 1 减去均方误 (MSE) 和均方总和 (MS Total) 之比计算得出。

解释

在想要比较具有不同数量的预测变量的情况下,使用调整的 R2。如果向模型添加预测变量,即使模型没有实际改善,R2 也会始终增加。调整的 R2 值包含模型中的预测变量数,以便帮助您选择正确的模型。

例如,您效力一家薯片公司,该公司正在检查影响每个包装内碎薯片百分比的因子。当您以向前逐步方式添加预测变量时,将得到以下结果。
模型 马铃薯百分比 冷却速率 加工温度 R2 调整的 R2
0 X     52% 51%
1 X X   63% 62%
3 X X X 65% 62%

第一个模型会生成超过 50% 的 R2。第二个模型会为自身增加冷却速率。调整的 R2 增加,这表明冷却速率会改善模型。提高了加工温度的第三个模型会增加 R2,但不会增加调整的 R2。这些结果表明,加工温度不会改善模型。基于这些结果,您可以考虑从模型中删除烹饪温度。

PRESS

预测误差平方和 (PRESS) 是对拟合值与观测值之间偏差的度量。PRESS 近似于残差误差平方和 (SSE),该平方和是平方残差的总和。但是,PRESS 使用不同的残差计算方法。用于计算 PRESS 的公式相当于从数据集中系统地删除每个观测值、估计回归方程,然后确定模型对已删除观测值的预测能力的一系列过程。

解释

使用 PRESS 可评估模型的预测能力。通常,PRESS 值越小,模型的预测能力越强。Minitab 使用 PRESS 来计算预测的 R2(通常解释起来更直观)。同时,这些统计量还可以阻止过度拟合模型。在向总体中添加不太重要的效应项的情况下(尽管它们在样本数据中看起来比较重要),可能会产生过度拟合模型。模型针对样本数据而定制,因此可能对于总体预测不太有效。

R-sq(预测)

预测的 R2 采用相当于从数据集中系统地删除每个观测值的这种公式来计算,估计回归方程,然后确定模型对已删除观测值的预测优度。预测的 R2 值范围在 0% 和 100% 之间。(当预测 R2 的计算可以产生负值时,Minitab 会针对这些情况显示零。)

解释

使用预测的 R2 可确定模型对新观测值的响应进行预测的程度。 具有较大预测 R2 值的模型的预测能力也较出色。

实质上小于 R2 的预测的 R2 可能表明模型过度拟合。在向总体中添加不太重要的影响项的情况下,可能会发生过度拟合模型。模型针对样本数据而定制,因此可能对于总体预测不太有效。

在比较模型方面,预测的 R2 还可能比调整的 R2 更有效,因为它是用模型计算中未包含的观测值计算得出的。

例如,某家金融咨询公司的分析师开发了一个模型,用于预测未来市场状况。该模型看起来前景不错,因为其 R2 为 87%。但是,预测的 R2 仅为 52%,这表明该模型可能过度拟合。

Mallows Cp

Mallows Cp 可以帮助您在竞争多元回归模型之间进行选择。Mallows Cp 会利用预测变量的子集来比较模型与全模型。它可帮助您在模型中的预测变量数方面实现重要平衡。具有过多预测变量的模型的精确度相对较差,而预测变量过少的模型又会产生偏倚的估计值。仅当使用相同的预测变量完整集合时,采用 Mallows Cp 比较回归模型才有效。

解释

接近于预测变量加上常量数的 Mallows Cp 值表明,模型会生成相对精确和无偏倚的估计值。

大于预测变量加上常量数的 Mallows Cp 值表明,模型存在偏倚且未能很好地拟合数据。

S

S 表示数据值和拟合值之间距离的标准偏差。S 以响应单位进行度量。

解释

使用 S 可评估模型描述响应值的程度。S 以响应变量的单位进行度量,它表示数据值与拟合值的距离。S 值越低,模型描述响应的程度越高。但是,自身低 S 值并不表明模型符合模型假设。您应检查残差图来验证假设。

例如,您效力一家薯片公司,该公司正在检查影响每个包装内碎薯片百分比的因子。 将模型简化为显著的预测变量,S 的计算结果为 1.79。此结果表明拟合值附近的数据点的标准差为 1.79。如果您在比较模型,则低于 1.79 的值表明拟合较优,值较高则表明拟合较差。

AICc 和 BIC

更正的 Akaike 信息标准 (AICc) 和 Bayesian 信息标准 (BIC) 是针对模型相对质量的度量,说明模型中的拟合与项数。

解释

使用 AIC、AICc 和 BIC 比较不同的模型。值越小越合意。但是,对于预测变量集具有最小值的模型,不一定需要很准确地拟合数据。而且,还可使用检验和残差图评估模型与数据的拟合优度。

AICc 和 BIC 评估模型的似然,然后将用来添加项的惩罚应用于模型。惩罚会降低趋势,以使模型过度拟合样本数据。趋势降低可能会生成性能通常更佳的模型。

一般准则是,当参数个数相对于样本数量较小时,BIC 对于添加每个参数所施加的惩罚比 AICc 大。在这些情况下,最小化 BIC 的模型往往比最小化 AICc 的模型小。

在一些常见情况(如筛选设计)下,参数个数相对于样本数量通常较大。在这些情况下,最小化 AICc 的模型往往比最小化 BIC 的模型小。例如,对于包含 13 个游程的明确筛选设计,在一组包含 6 个或多个参数的模型中,最小化 AICc 的模型往往比最小化 BIC 的模型小。

有关 AICc 和 BIC 的更多信息,请参见 Burnham 和 Anderson.1

条件数

条件数度量模型项之间的共线性。回归中的多重共线性是模型中一些项与其他项相关时的一种条件。当您比较模型时,条件数值越小越好。

解释

使用条件数可以比较具有不同项的模型。条件数 1 表示模型项是不相关的。值越大,表明共线性越高。

尽管特定条件数的结果依赖多个条件,但值大于 100 通常表示需要进行调查。当该模型中的项呈多重共线性,对该模型的解释不如对具有非相关项的模型的解释直接。有关更多信息,请转到回归中的多重共线性

在这些结果中,当模型中只有 1 个项时,条件数为 1。(当模型有 1 个连续预测变量时,条件数始终为 1。)任何模型的条件数都不会大于 100,因此预测变量之间的多重共线性不可能对结果产生较大的效应。

响应为 热通量

变量R-SqR-Sq (调整)PRESSR-Sq(预测)Mallows CpSAICcBIC条件编码



172.171.04855.966.938.512.328232.873236.0151.000      X 
139.437.110822.626.3112.718.154255.321258.4631.000X       
285.984.82736.581.49.18.9321215.798219.6001.807    XX 
282.080.63786.474.217.810.076222.788226.5905.344      XX
387.485.93089.779.07.68.5978215.390219.6182.428  XXX 
386.584.92725.981.49.78.9110217.466221.6935.141X  XX 
489.187.32847.280.65.88.1698214.454218.8405.988XXXX 
488.086.03045.779.38.28.5550217.127221.51220.427X  XXX
589.987.73109.978.86.08.0390215.799220.03722.614XXXXX

1 Burnham, K. P. 和 Anderson, D. R. (2004)。Multimodel inference: Understanding AIC and BIC in model selection(多模型推断:了解模型选择中的 AIC 和 BIC)。Sociological Methods & Research(社会学方法和研究)33(2),第 261-304 页。doi:10.1177/0049124104268644