系数用于描述模型中的项和响应变量之间关系的大小和方向。要最小化各项之间的多重共线性,所有系数都需采用编码单位。
一个项的系数表示在其他项保持恒定时,与该项中一个编码单位的增长相关联的平均响应变化。系数的符号表明项与响应之间关系的方向。效应的大小不代表一个项是否在统计意义上显著,因为显著性的计算还要考虑系数估计值的准确度。要确定统计显著性,请检查该项的 p 值。
不涉及因子的项(如协变量项和区组项)不使用编码单位。对这些系数的解释是不同的。
如果反复从同一总体中取样,系数的标准误会估计您将获取的系数估计值之间的变异性。计算假定要估计的试验设计和系数在反复取样的情况下保持一致。
使用系数的标准误可度量系数估计值的精确度。标准误越小,估计值越精确。将系数除以其标准误将计算 t 值。如果与该 t 统计量相关联的 p 值小于显著性水平,则可以得出系数在统计意义上显著的结论。
这些置信区间 (CI) 是可能包含模型中每个项的实际系数值的值范围。
由于样本的随机性,来自总体的两个样本不可能生成相同的置信区间。但是如果随机取样多次,则所获得的特定百分比的置信区间会包含未知的总体参数。这些包含参数的置信区间的百分比是区间的置信水平。
使用置信区间可以评估模型中每个项的总体系数估计值。
例如,对于 95% 置信区间,置信区间包含总体系数的值的可信度为 95%。该置信区间有助于评估结果的实际意义。使用您的专业知识可以确定置信区间是否包括对您的情形有实际意义的值。如果区间因太宽而毫无用处,请考虑增加样本数量。
T 值用来度量系数与其标准误之间的比值。
Minitab 使用 t 值计算 p 值,该 p 值可用于检验系数是否与 0 显著不同。
您可以使用 t 值来确定是否要否定原假设。但是,通常会使用 p 值,因为无论自由度是多少,否定原假设的阈值都相同。有关使用 t 值的更多信息,请转到使用 t 值来确定是否要否定原假设。
P 值是一个概率,用来度量否定原假设的证据。概率越低,否定原假设的证据越充分。
要确定系数是否不同于 0,请将项的 p 值与显著性水平进行比较以评估原假设。原假设声明系数等于 0,这意味着该项与响应之间没有关联。
通常,显著性水平(用 α 或 alpha 表示)为 0.05 即可。显著性水平 0.05 指示在系数为 0 时得出系数不为 0 的结论的风险为 5%。
方差膨胀因子 (VIF) 表明,根据模型中预测变量之间的关联,系数方差膨胀的程度。
使用 VIF 可描述模型中存在的多重共线性的程度(与预测变量之间相关联)。筛选设计模型最常见的情况是只有主效应。在这种情况下,VIF 等于 1,除非存在协变量或修补游程。筛选设计模型中常见的部分别名会增加多重共线性。多重共线性会使得统计显著性的确定过程变复杂。在数据收集过程中在模型和修补游程实例中包括协变量也会增加 VIF 值。使用以下准则解释 VIF:
VIF | 预测变量状态 |
---|---|
VIF = 1 | 不相关 |
1 < VIF < 5 | 中等相关 |
VIF > 5 | 高度相关 |
在存在多重共线性的情况下使用统计显著性选择要从模型中删除的项时,请务必小心。一次只能在模型中添加和删除一个项。在更改模型时,请监视模型中汇总统计量的变化以及对统计显著性的检验。