使用 Pareto 标准化效应图可比较主效应、平方效应和交互作用效应的相对量值与统计显著性。如果模型包括误差项,则此图显示标准化效应的绝对值。如果模型不包括误差项,则 Minitab 将不创建 Pareto 图。
Minitab 按照标准化效应绝对值的递减顺序绘制标准化效应图。图中的参考线表明哪些效应是显著效应。默认情况下,Minitab 使用显著性水平 0.05 绘制参考线。
要确定响应与模型中每个项之间的关联在统计意义上是否显著,请将该项的 P 值与显著性水平进行比较以评估原假设。原假设声明该项的系数等于零,这意味着该项与响应之间没有关联。通常,显著性水平(用 α 或 alpha 表示)为 .05 即可。显著性水平 .05 指示在实际上不存在关联时得出存在关联的风险为 5%。
如果一个模型项在统计意义上显著,则解释取决于该项的类型。解释如下所示:
来源 | 自由度 | Adj SS | Adj MS | F 值 | P 值 |
---|---|---|---|---|---|
模型 | 14 | 1137.51 | 81.251 | 4.19 | 0.004 |
线性 | 4 | 218.65 | 54.662 | 2.82 | 0.060 |
热条 T | 1 | 68.13 | 68.129 | 3.52 | 0.079 |
停留时间 | 1 | 70.94 | 70.939 | 3.66 | 0.074 |
热条 P | 1 | 52.62 | 52.616 | 2.71 | 0.119 |
材料温度 | 1 | 26.96 | 26.963 | 1.39 | 0.255 |
平方 | 4 | 372.07 | 93.018 | 4.80 | 0.010 |
热条 T*热条 T | 1 | 202.61 | 202.611 | 10.45 | 0.005 |
停留时间*停留时间 | 1 | 175.32 | 175.318 | 9.05 | 0.008 |
热条 P*热条 P | 1 | 50.52 | 50.522 | 2.61 | 0.126 |
材料温度*材料温度 | 1 | 37.87 | 37.866 | 1.95 | 0.181 |
双因子交互作用 | 6 | 546.79 | 91.132 | 4.70 | 0.006 |
热条 T*停留时间 | 1 | 540.47 | 540.470 | 27.89 | 0.000 |
热条 T*热条 P | 1 | 0.12 | 0.121 | 0.01 | 0.938 |
热条 T*材料温度 | 1 | 0.30 | 0.305 | 0.02 | 0.902 |
停留时间*热条 P | 1 | 4.84 | 4.840 | 0.25 | 0.624 |
停留时间*材料温度 | 1 | 0.90 | 0.899 | 0.05 | 0.832 |
热条 P*材料温度 | 1 | 0.16 | 0.160 | 0.01 | 0.929 |
误差 | 16 | 310.08 | 19.380 | ||
失拟 | 10 | 308.20 | 30.820 | 98.51 | 0.000 |
纯误差 | 6 | 1.88 | 0.313 | ||
合计 | 30 | 1447.60 |
要确定模型与数据的拟合优度,请检查模型汇总表中的拟合优度统计量。
使用 S 可评估模型描述响应值的程度。使用 S 替代 R2 统计量,以比较模型拟合。
S 以响应变量单位进行度量,它表示数据值与实际响应曲面的距离的变异。S 值越低,模型描述响应的程度越高。但是,自身低 S 值并不表明模型符合模型假设。您应检查残差图来验证假设。
R2 值越高,模型拟合数据的优度越高。R2 始终介于 0% 和 100% 之间。
如果向模型添加其他预测变量,则 R2 会始终增加。例如,最佳的 5 预测变量模型的 R2 始终比最佳的 4 预测变量模型的高。因此,比较相同大小的模型时 R2 最有效。
在想要比较具有不同数量的预测变量的情况下,使用调整的 R2。如果向模型添加预测变量,即使模型没有实际改善,R2 也会始终增加。调整的 R2 值包含模型中的预测变量数,以便帮助您选择正确的模型。
使用预测的 R2 可确定模型对新观测值的响应进行预测的程度。具有较大预测 R2 值的模型的预测能力也较出色。
实质上小于 R2 的预测的 R2 可能表明模型过度拟合。在向总体中添加不太重要的影响项的情况下,可能会发生过度拟合模型。模型针对样本数据而定制,因此可能对于总体预测不太有效。
在比较模型方面,预测的 R2 还可能比调整的 R2 更有效,因为它是用模型计算中未包含的观测值计算得出的。
S | R-sq | R-sq(调整) | R-sq(预测) |
---|---|---|---|
4.40228 | 78.58% | 59.84% | 0.00% |
在这些结果中,模型解释了光输出中 78.58% 的变异。但是,R2(预测)为 0% 表示模型过度拟合。如果要拟合具有不同预测变量的其他模型,请使用调整的 R2 值和预测的 R2 值来比较模型与数据的拟合度。
使用残差图可帮助您确定模型是否适用并符合分析的假设。如果不符合此假设,则模型可能无法充分拟合数据,在解释结果时应当格外小心。
有关如何处理残差图模式的更多信息,请转到分析因子设计的残差图,然后单击页面顶部列表中残差图的名称。
模式 | 模式的含义 |
---|---|
残差相对拟合值呈扇形或不均匀分散 | 异方差 |
曲线 | 缺少高阶项 |
远离 0 的点 | 异常值 |
在 X 方向远离其他点的点 | 有影响的点 |
使用残差与拟合值图可验证残差是否随机分布且具有常量方差的假设。理想情况下,点应当在 0 的两端随机分布,点中无可辨识的模式。
使用残差正态概率图可验证残差呈正态分布的假设。残差的正态概率图应该大致为一条直线。
下表中的模式可能表示该模型不满足模型假设。
模式 | 模式的含义 |
---|---|
非直线 | 非正态性 |
远离直线的点 | 异常值 |
斜率不断变化 | 未确定的变量 |