一般多元方差分析中诊断度量的方法和公式

请选择您所选的方法或公式。

杠杆率 (Hi)

杠杆率通过帽子矩阵 (H) 获得,该矩阵属于一种 n x n 投影矩阵:

i 个观测值的杠杆率是第 i 个对角线元素 Hhi。如果 hi 较大,则第 i 个观测值的预测变量 (X1i, X2i, ..., Xpi) 异常。即,预测变量值远离均值向量 (使用 Mahalanobis 距离)。

杠杆率值位于 0 和 1 之间。Minitab 会在异常观测值表中用 X 标识杠杆率大于 3p/n 或 0.99(以较小者为准)的观测值。通常,您应检查具有较大杠杆率的值。

表示法

说明
X设计矩阵
hi帽子矩阵的第 i 个对角线元素
p模型中的项数,包括常量
n观测值个数

Cook 距离

整体度量 D 是所有估计回归系数对某个观测值的共同影响。Minitab 使用杠杆率值和标准化残差来计算 D,并在分析某个观测值是否异常时会同时考虑 x 和 y 值。具有较大 D 值的观测值可能为异常值。

公式

Cook 距离是指使用和未使用第 i 个观测值计算的系数之间的距离。在每次忽略观测值但不拟合新回归方程的情况下,Minitab 可计算 Cook 距离。此计算为:

表示法

说明
ei i 个残差
hi 以下公式的第 i 个对角线元素:
p 模型参数的数量,包括常量
s 2 均方误
b 系数向量
b(i) 删除第 i 个观测值之后计算的系数向量
X 设计矩阵

DFITS

将杠杆率和 t 化残差(删后 t 残差)值合并为一个表示观测值异常程度的整体度量。DFITS 度量每个观测值对回归和方差分析模型中的拟合值的影响。具有较大 DFITS 值的观测值可能为异常值。

DFITS 粗略表示从数据集中删除每个观测值并重新拟合模型时,拟合值改变的标准差的数量。在每次忽略观测值但不拟合新回归方程的情况下,Minitab 计算 DFITS。

公式

表示法

说明
ei i 个残差
hi 以下公式的第 i 个对角线元素:
X 设计矩阵
i 个拟合响应
不使用第 i 个观测值计算的拟合值
MSE (i) 不使用第 i 个观测值计算的均方误
n 观测值个数
p 模型参数个数