拟合值也称为拟合或。拟合值是对指定预测变量值的平均响应的点估计。预测变量值也称为 x 值。
拟合值是通过将数据集内每个观测值的特定 x 值输入到模型方程中来计算的。
例如,如果方程为 y = 5 + 10x,则 x 值 2 的拟合值为 25 (25 = 5 + 10(2))。
其拟合值与观测值显著不同的观测值可能是异常值。具有异常预测变量值的观测值可能是有影响的观测值。如果 Minitab 确定数据包含异常值或有影响的值,则输出中会包含“异常观测值的拟合值与诊断”表,此表可确定这些观测值。Minitab 标记的异常观测值未能很好地遵循建议的回归方程。但是,预计您将得到一些异常观测值。例如,基于较大标准化残差的标准,因为具有较大的标准化残差,预计将标记约 5% 的观测值。有关异常值的更多信息,请转到异常观测值。
拟合值标准误(拟合值 SE)用于估计指定变量设置的估计平均响应中的变异。将使用拟合值标准误来计算平均响应的置信区间。标准误始终为非负值。
使用拟合值标准误可度量平均响应估计值的精确度。标准误越小,预测平均响应越精确。例如,一位分析人员设计了一个用于预测交货时间的模型。对于一组变量设置,该模型预测平均交货时间为 3.80 天。这些设置的拟合值标准误为 0.08 天。对于第二组变量设置,模型生成了相同的平均交货时间,但是拟合值标准误为 0.02 天。该分析人员可以确信:第二组变量设置的平均交货时间更接近 3.80 天。
您可以将拟合值标准误与拟合值结合使用,从而创建平均响应的置信区间。例如,根据自由度的数量,95% 置信区间将大约从预测均值上方和下方展开两个标准误。对于交货时间,当标准误为 0.08 时,预测均值 3.80 天的 95% 置信区间为 (3.64, 3.96) 天。总体均值在此范围内的置信度为 95%。当标准误为 0.02 时,95% 置信区间为 (3.76, 3.84) 天。第二组变量设置的置信区间更窄,因为其标准误较小。
残差 (ei) 是观测值 (y) 与其相应的拟合值 () 之间的差值,此差值是由模型预测的值。
绘制残差图可确定模型是否适用且符合回归的假设。检查残差可以提供有关模型对数据的拟合优度的有用信息。通常,残差应当是随机分布的,而且没有明显的模式和异常值。如果 Minitab 确定数据包含异常观测值,则会在输出的“异常观测值的拟合与诊断”表中确定这些观测值。Minitab 标记的异常观测值未能很好地遵循建议的回归方程。但是,预计您将得到一些异常观测值。例如,基于较大残差的标准,因为具有较大的残差,预计将大致标记 5% 的观测值。有关异常值的更多信息,请转到异常观测值。
标准化残差等于残差值 (ei) 除以其标准差的估计值。
使用标准化残差可帮助您检测异常值。大于 2 和小于 −2 的标准化残差通常被视为较大值。“异常观测值的拟合与诊断”表使用“R”来标识这些观测值。Minitab 标记的观测值未能很好地遵循建议的回归方程。但是,预计您将得到一些异常观测值。例如,基于较大标准化残差的标准,因为具有较大的标准化残差,预计将大致标记 5% 的观测值。有关更多信息,请转到异常观测值。
标准化残差非常有用,因为原始残差可能不是有效的异常值指示符。每个原始残差的方差可能会因与之相关的 x 值的不同而有所差异。这一变异不等情况会造成难以评估原始残差的量级。标准化残差则可以通过将不同方差转换为通用尺度来解决该问题。