解释 单样本 t 的功效和样本数量 的主要结果

通过完成以下步骤来解释 单样本 t 的功效和样本数量。主要输出包括差值、样本数量、功效和功效曲线。

步骤 2:检查功效曲线

使用功效曲线可以为您的检验评估合适的样本数量或功效。

功效曲线表示当显著性水平和标准差保持恒定时,每个样本数量的每个功效与差值组合。功效曲线上的每个符号都表示一个基于输入值的计算值。例如,如果您输入一个样本数量和一个功效值,Minitab 会计算相应的差值并将计算值显示在图形上。

检查曲线上的值,确定可以在特定功效值和样本数量处检测到的均值与目标之间的差值。通常认为功效值为 0.9 足矣。但是,有些从业者认为功效值为 0.8 足矣。如果假设检验的功效较低,则可能无法检测到实际上有意义的差值。如果增加样本数量,检验功效也会提高。您希望样本中有足够的观测值以达到足够的功效。但是,您不希望样本数量过大,让您在不必要的抽样上浪费时间和金钱或者检测在统计意义上显著但不重要的差值。 如果您减小要检测的差值,则功效也会降低。

在此图形中,样本数量 26 的功效曲线表明,对于差值 100,检验的功效为 0.9。当差值接近 0 时,检验的功效会降低并接近 α(又称为显著性水平),在该分析中 α 为 0.05。

使用此网站,即表示您同意对数据分析和个性化内容使用 Cookie。  请阅读我们的政策