选择 双样本 t 的功效和样本数量 的分析选项

统计 > 功效和样本数量 > 双样本 t > 选项

选择备择假设或指定检验的显著性水平。

备择假设
备择假设中,选择要检验的假设:
  • 小于使用此单侧检验确定一个总体均值是否小于另一个总体均值。虽然此单侧检验比双侧检验的功效更高,但是它无法检测一个总体均值是否大于另一个总体均值。如果您选择此选项,则在双样本 t 的功效和样本数量对话框上的差值中输入负值。

    例如,一位工程师使用此单侧检验确定两家供应商的塑料薄膜强度的平均差值是否小于 0。虽然此单侧检验在检测强度差值是否小于 0 方面具有更高的功效,但是它无法检测差值是否大于 0。

  • 不等于使用此双侧检验确定两个总体均值是否相等。虽然此双侧检验可以检测一个总体均值是小于还是大于另一个总体均值,但是它比单侧检验的功效要低。

    例如,一位银行经理希望知道两家银行的平均客户满意度评分是否不同。因为评分的任何差异都很重要,所以该经理使用此双侧检验确定一家银行的评分是高于还是低于另一家银行的评分。

  • 大于使用此单侧检验确定一个总体均值是否大于另一个总体均值。虽然此单侧检验比双侧检验的功效更高,但是它无法检测一个总体均值是否小于另一个总体均值。如果您选择此选项,则在双样本 t 的功效和样本数量对话框上的差值中输入正值。

    例如,一位技术员使用单侧检验确定两台灌装机的速度均值之差是否大于 0 秒/盒。虽然此单侧检验在检测该速度差值是否大于 0 方面具有更高的功效,但是它无法检测该差值是否小于 0。

有关选择单侧或双侧备择假设的更多信息,请转到关于原假设和备择假设

显著性水平

使用显著性水平可以在原假设 (H0) 为真时最小化检验的功效值。显著性水平越高,检验功效越大,犯 I 型错误(否定原本为真的原假设)的概率越大。

通常,显著性水平(用 α 或 alpha 表示)为 0.05 即可。显著性水平 0.05 指示在实际上不存在差异时得出存在差异的风险为 5%。它还指示在没有差异时,检验的功效为 0.05。
  • 选择较高的显著性水平(如 0.10),则更加确信能够检测到任何可能存在的差异。例如,质量工程师对新滚珠轴承的稳定性与当前轴承的稳定性进行比较。该工程师必须十分确信新滚珠轴承非常稳定,因为不稳定的滚珠轴承可能会带来灾难。因此,他选择显著性水平 0.10,以便更加确信能够检测到与滚珠轴承稳定性方面有关的任何可能的差异。
  • 选择较低的显著性水平(如 0.01),则更加确信将仅检测实际存在的差异。例如,制药公司的科学家必须十分确信有关公司的新药品能够显著减轻症状的声明是正确的。该科学家选择显著性水平 0.01,以便更加确信有关症状的任何显著差异的确存在。
使用此网站,即表示您同意对数据分析和个性化内容使用 Cookie。  请阅读我们的政策