单样本等价检验 的图形

请查找定义和解释指导,了解随单样本等价检验提供的每个图形。

等价图

等价图显示等价限值、等价置信区间,以及您是否可以声明等价的决策。

解释

使用等价图可以查看等价检验结果的图形汇总并确定您能否声明等价。

将置信区间与等价限值进行比较。如果置信区间完全在等价限值范围内,则可以声明总体均值等于目标值。如果部分置信区间超出等价限值,则无法声明等价。

在这些结果中,95% 置信区间超出了等价上限。因此,您无法声明总体均值等于目标值。

直方图

直方图将样本值分成多个区间并使用条形表示每个区间中的数据值频率。

解释

使用直方图可以评估数据的形状和散布。当样本数量大于 20 时,直方图效果最佳。

偏斜数据

确定数据看上去是否偏斜。当数据偏斜时,大部分数据都朝向图形的高端或低端。通常情况下,在箱线图或直方图中最易于识别偏度。

右偏斜
左偏斜

例如,右偏斜的直方图显示薪金数据。很多员工的薪金相对较低,而薪金较高的员工越来越少。左偏斜的直方图显示故障率数据。少数项目在早些时候发生故障,而在后期发生故障的项目逐渐增多。

如果您的样本较小(小于 20 个值),严重偏斜的数据可能会影响检验结果的有效性。如果您的数据严重偏斜,并且样本较小,请考虑增大样本数量。

异常值

异常值是远离其他数据的数据点,可能会显著影响您的结果。在箱线图上最容易识别异常值。

在直方图上,图形任一端上的孤立条形暗示可能的异常值。

您应该尝试确定导致任何异常值的原因。请更正任何数据输入错误或测量误差。可以考虑删除与特殊原因相关的数据,然后重新分析。有关特殊原因的更多信息,请转到使用控制图检测常见原因变异和特殊原因变异

单值图

单值图显示水平列中样本的单个值。每个圆形表示一个观测值。当您具有的观测值相对较少,并且想要评估每个观测值的效应时,单值图会很有用。

解释

偏斜数据

确定数据看上去是否偏斜。当数据偏斜时,大部分数据都朝向图形的高端或低端。通常情况下,在箱线图或直方图中最易于识别偏度。

右偏斜
左偏斜

例如,右偏斜的单值图显示薪金数据。很多员工的薪金相对较低,而薪金较高的员工越来越少。左偏斜的单值图显示故障率数据。少数项目在早些时候发生故障,而在后期发生故障的项目逐渐增多。

如果您的样本较小(小于 20 个值),严重偏斜的数据可能会影响检验结果的有效性。如果您的数据严重偏斜,并且样本较小,请考虑增大样本数量。

异常值

异常值是远离其他数据的数据点,可能会显著影响您的结果。在箱线图上最容易识别异常值。

在单值图上,异常低或异常高的数据值暗示可能的异常值。

您应该尝试确定导致任何异常值的原因。请更正任何数据输入错误或测量误差。可以考虑删除与特殊原因相关的数据,然后重新分析。有关特殊原因的更多信息,请转到使用控制图检测常见原因变异和特殊原因变异

箱线图

箱线图提供了样本分布的图形汇总。箱线图显示数据的形状、中心趋势和变异性。

解释

使用箱线图可以检查数据的散布,还可以确定任何可能的异常值。当样本数量大于 20 时,箱线图效果最佳。

偏斜数据

确定数据看上去是否偏斜。当数据偏斜时,大部分数据都朝向图形的高端或低端。通常情况下,在箱线图或直方图中最易于识别偏度。

右偏斜
左偏斜

例如,右偏斜的箱线图显示薪金数据。很多员工的薪金相对较低,而薪金较高的员工越来越少。左偏斜的箱线图显示故障率数据。少数项目在早些时候发生故障,而在后期发生故障的项目逐渐增多。

如果您的样本较小(小于 20 个值),严重偏斜的数据可能会影响检验结果的有效性。如果您的数据严重偏斜,并且样本较小,请考虑增大样本数量。

异常值

异常值是远离其他数据的数据点,可能会显著影响您的结果。在箱线图上最容易识别异常值。

在箱线图上,异常值用星号 (*) 标识。

您应该尝试确定导致任何异常值的原因。请更正任何数据输入错误或测量误差。可以考虑删除与特殊原因相关的数据,然后重新分析。有关特殊原因的更多信息,请转到使用控制图检测常见原因变异和特殊原因变异

使用此网站,即表示您同意对数据分析和个性化内容使用 Cookie。  请阅读我们的政策