扩展量具 R&R 研究的方法和公式

请选择您所选的方法或公式。

量具 R&R 扩展研究法

Minitab 使用带有三种方差分析模型的一般线性模型法执行量具 R&R 研究:随机效应模型、混合效应模型和嵌套设计模型。默认使用随机效应模型。如果任何因子是固定因子或嵌套因子,则使用混合效应模型或嵌套设计模型。

最终选定的模型仅包含主效应项、显著高次交互作用,以及它们之间的相关交互作用。Minitab 为合适模型计算方差分析表。然后,使用该表计算量具 R&R 表中出现的方差分量。

参考书

Burdick, R. K., Borror, C. M., and Montgomery, D.C. (2003). "A Review of Methods for Measurement Systems Capability Analysis", Journal of Quality Technology, 35(4) 342–354.

Adamec, E. and Burdick, R.K. (2003). "Confidence Intervals for a Discrimination Ratio in a Gauge R&R Study with Three Random Factors", Quality Engineering, 15(3) 383–389.

随机效应模型

此命令中使用的默认模型是随机效应模型。如果您指定完整的三因子模型,则:

Yijkl = μ + Pi + Oj + Ak + (PO)ij + (PA)jk + (OA)jk + (POA)ijk + εijkl

其中:
说明
μ常量
Pi第 i 个部件
说明
Oj 第 j 个操作员
说明
Ak其他因子的第 k 种水平

Pi、Oj、Ak、(PO)ij、(PA)jk、(OA)jk、(POA)ijk 和 εijkl 服从均值为零的独立正态分布,它们分别是以下各项的方差:

Minitab 使用 拟合一般线性模型 估计方差分量。有关估计方差分量的更多详细信息,请转到“拟合一般线性模型的方法和公式”。

如果“部件”项是用于计算部件间变异的唯一项:
合计量具 R&R
重复性
再现性
操作员
A
部件 * 操作员
部件 * A
部件间
部件
总变异
注意

在指定用来估计过程变异的历史标准差时,Minitab 执行以下操作:

  • 如果历史标准差大于根据数据计算的合计量具标准差,则合计标准差为 σ,部件间标准差为
  • 否则,Minitab 使用数据估计总标准差和部件间的变异。

如果为部件间变异指定了多个项,则表将进行相应地更改。例如,如果“部件”因子和“因子 A”均表示过程变异,则将指定“部件”、“A”及其相互作用项用于评估部件间的变异:
合计量具 R&R
重复性
再现性
操作员
部件 * 操作员
部件间
部件
A
部件 * A
总变异
注意

在指定用来估计过程变异的历史标准差时,Minitab 执行以下操作:

  • 如果历史标准差大于根据数据计算的合计量具标准差,则合计标准差为 σ,部件间标准差为
  • 否则,Minitab 使用数据估计总标准差和部件间的变异。

对于 3 个以上因子,量具重复性、再现性和部件间的方差分量将类似地定义为 3 个因子的情况。通常:
  • 量具重复性 = 误差项的方差分量
  • 部件间变异 = 部件的方差分量或者部件间项的方差分量之和
  • 量具再现性 = 其余项的方差分量之和

混合效应模型

如果线性模型中的一些项是固定的,则该模型是混合效应模型。随机项的方差分量使用 拟合一般线性模型 中的结果获得。

有关估计方差分量的详细信息,请转到“拟合一般线性模型 的方法和公式”。

固定项没有方差分量。各个水平的固定项之间的变异通过以下公式进行评估:
  1. 通过拟合线性模型,Minitab 评估第一组 J-1 因子水平的系数。
  2. 水平 J 的系数 = –(第一组 J-1 水平的系数之和)。
  3. 估计变异 = 所有水平的(系数)2 之和 / 水平个数。

在对混合效应的量具再现性进行计算时,固定项的方差分量应替换为 φ,但保留随机效应模型定义。

嵌套设计模型

如果某些因子嵌套在其他因子之中,Minitab 将使用 拟合一般线性模型 拟合模型。有关估计方差分量的详细信息,请转到“拟合一般线性模型 的方法和公式”。

量具重复性、再现性和部件间的变异在随机因子和固定因子的情况下定义方式相同。

量具 R&R 扩展计算

Minitab 显示 扩展量具 R&R 研究 的两个表。第一个表包含“方差分量”列和“(方差分量)%贡献”列。有关估计方差分量的详细信息,请转到“拟合一般线性模型 的方法和公式”。

%贡献 = 方差分量值 / 总变异。

第二个表包含:
  • 标准差 (SD) = 平方根(方差分量)
  • 研究变异 = 标准差数 * 标准差
  • %研究变异 (%SV) =研究变异 / 总变异的研究变异
  • %公差 = 研究变异 / 过程公差
  • %过程 = 标准差 / 历史标准差

可区分类别数

可区分类别数表示要跨越产品变异极差的非重叠置信区间数。您也可以将其视为测量系统可识别的过程数据中的分组数。

然后,Minitab 会截断该值的尾数,除非该值小于 1。如果小于 1,Minitab 会将可区分类别数设为等于 1。

置信区间

假设 L 和 U 是量具方差和总方差比率的下限和上限,则可区分类别数的下限和上限为:

注意

L 和 U 必须介于 (0, 1) 之间。如果 L 和 U 超出该范围,则可区分类别数的下限和上限将缺失。

误分类概率(P)

当至少输入一个规格限时,Minitab 会将误分类概率作为联合概率和条件概率进行计算。

联合概率

可能某部件是不合格的,而您接受了它:

可能某部件是合格的,而您拒绝了它:

条件概率

可能某部件是不合格的,而您接受了它(误接受):

可能某部件是合格的,而您拒绝了它(误拒绝):

表示法

F(X,Y) 是二变量正态随机向量 (X,Y)T 的累积分布函数 (CDF):

均值,μ = (θ,θ)T

F(X) 和 F(Y) 是相应边际 CDF。

使用此网站,即表示您同意对数据分析和个性化内容使用 Cookie。  请阅读我们的政策