带拟合线的图

带拟合线的图显示响应变量和预测变量数据。该图包含可表示正交回归方程的正交回归线。

您还可以选择在该图上显示用于比较的最小二乘拟合线。两条线之间较大的差距显示结果对您能否解释预测变量值的不确定性的依赖程度。最小二乘值等于正交回归的预测值,因此您还可以使用最小二乘线检查预测值。

解释

使用该图和拟合线评估正交回归方程能否很好地拟合数据。当模型与数据拟合时,点紧密分布在回归线附近。特别需要指出的是,您可以根据以下标准检查拟合线图:
  • 样本包含所有预测变量的整个范围内的数量足够的观察值。
  • 样本不包含任何模型无法拟合的弯曲。
  • 样本不包含任何异常值,异常值可能会对结果有较大影响。尝试确定导致任何异常值的原因。更正任何数据输入错误或可识别的测量误差。考虑删除与异常的单次事件(特殊原因)相关联的数据值。然后,重新执行分析。

您通常将正交回归用于临床化学或实验室,以确定两种工具或方法能否提供相似的测量值。

该图显示两种工具或方法的测量值相似的示例。点沿散点最少和无任何模式的拟合线分布,表明这两种方法之间存在系统差异。

在下面的结果中,系数的置信区间无法提供两种工具的测量值存在差异的证据。但是,该图显示点未紧密分布在线附近,这表明两种工具的测量值不相似。由于数据无法拟合方程,因此通常的结论为工具存在差异。

正交回归分析: 当前 与 新

系数 预测变量 系数 系数标准误 Z P 近似 95% 置信区间 常量 -0.00000 0.215424 -0.0000 1.000 (-0.422224, 0.42222) 新 1.00000 0.517586 1.9320 0.053 (-0.014450, 2.01445)

残差的直方图

残差的直方图显示所有观测值的残差分布。

解释

使用残差直方图确定数据是否偏斜或包含异常值。下表中的模式可能表示该模型不满足模型假设。
形式 模式的含义
朝着一个方向的长尾 偏度
远离其他条形的条形 异常值

您通常将正交回归用于临床化学或实验室,以确定两种工具或方法能否度量相同的事件。如果模型无法满足假设,有一种解释是这些方法无法度量相同的事件。

由于直方图的外观取决于用来对数据分组的区间数,因此在评估残差的正态性时不要使用直方图,而是改用正态概率图。

在具有大约 20 个或更多个数据点时,直方图效果最明显。则直方图上的每个条形无法包含足够的数据点,因而无法可靠地显示偏度或异常值。

残差的正态概率图

残差的正态概率图显示,当分布呈正态时,残差与期望值的关系。

解释

使用残差正态概率图可验证残差呈正态分布的假设。残差的正态概率图应该大致为一条直线。

以下模式违反了残差呈正态分布这一假设。

S 曲线表示长尾分布。

反向 S 曲线表示短尾分布。

向下的曲线表示右偏斜分布。

远离线的几个点表示分布中有异常值。

您通常将正交回归用于临床化学或实验室,以确定两种工具或方法能否度量相同的事件。如果您发现非正态模式,有一种解释是这些方法无法度量相同的事件。此外,可使用该模型检查其他残差图是否存在其他问题。如果残差不遵循正态分布,则置信区间和 P 值可能不准确。

残差与拟合值

残差与拟合值图在 Y 轴上标绘残差,在 X 轴上标绘预测变量的拟合值。

您通常将正交回归用于临床化学或实验室,以确定两种工具或方法能否度量相同的事件。如果模型无法满足假设,有一种解释是这些方法无法度量相同的事件。

解释

使用残差与拟合值图可验证残差随机分布和具有常量方差的假设。理想情况下,点应当在 0 的两端随机分布,点中无可辨识的模式。

下表中的模式可能表示该模型不满足模型假设。
模式 模式的含义
残差相对拟合值呈扇形或不均匀分散 异方差
曲线 缺少高阶项
远离 0 的点 异常值
在 X 方向远离其他点的点 有影响的点
下图显示了残差方差为常量这一假设中的异常值和冲突。
含异常值的图

其中一个点比所有其他点大得多。因此,该点是异常值。如果异常值过多,则模型可能不可接受。您应该尝试找出导致任何异常值的原因。更正任何数据输入错误或测量误差。考虑删除与异常的单次事件(也称为特殊原因)相关联的数据值。然后,重新执行分析。

含异方差的图

残差的方差随拟合值增加。请注意,随着拟合值增大,残差之间的散布变宽。此模式表示残差的方差不相等(非恒定)。

残差与顺序

残差与顺序图按照数据的收集顺序显示残差。

解释

使用残差与顺序图可验证残差独立于其他残差的假设。当以时序显示时,独立残差不显示趋势或模式。点中的模式可能表明,彼此相近的残差可能相关联,因此并不独立。理想情况下,图中的残差应围绕中心线随机分布:
如果查看模式,便可查出原因。下列类型的模式可能表明残差属于依赖项。
趋势
偏移
周期

残差与变量

残差与变量的关系图显示残差与另一个变量的关系。已在模型中包含此变量。或者,模型中未包含此变量,但是猜测它会影响响应。

解释

您通常将正交回归用于临床化学或实验室,以确定两种工具或方法能否度量相同的事件。与响应变量或预测变量相关的残差图模式可以阐明两种方法的不同之处。

在这些结果中,残差与拟合值图显示所有高残差值均位于该图中间的模式。残差与响应变量图表明当新方法的读数变大时,另一种方法的一致性就会变差。

使用此网站,即表示您同意对数据分析和个性化内容使用 Cookie。  请阅读我们的政策