拟合回归模型的方法表

在方法表格中查找每个统计量的定义和解释。

类别预测变量编码

Minitab 可以使用 (0, 1) 或 (−1, 0, +1) 编码方案以在模型中包含类别变量。(0, 1) 方案是回归分析的默认方案,而 (−1, 0, +1) 方案是方差分析和 DOE 的默认方案。在这两种方案之间的选择不会改变类别变量的统计显著性。但是,编码方案的确会改变系数和解释系数的方式。

解释

验证显示的编码方案,以确保执行预期分析。解释类别变量的系数,如下所示:

  • 在 (0, 1) 编码方案中,每个系数均代表每个水平均值和参考水平均值之间的差值。参考水平的系数未显示在系数表中。
  • 在 (−1, 0,+1) 编码方案中,每个系数均代表每个水平均值和整体均值之间的差值。

连续预测变量标准化

如果您选择对模型中的连续预测变量进行标准化,Minitab 将提供有关连续预测变量标准化表中的方法的详细信息。

通常可使用标准化来集中变量、调整变量,或同时执行这两种操作。当您集中变量时,会降低由多项式项和交互作用项引起的多重共线性,这会提高系数估计值的精确度。大多数情况下,当您调整变量时,Minitab 会将不同的变量尺度转换为通用尺度,以便于对比系数的大小。

解释

使用标准化方法表可验证是否按预期执行了分析。根据您选择的方法,您可能必须更改系数解释,如下所示:
将要编码的低水平和高水平指定为 -1 和 +1
此方法可同时集中和调整变量。Minitab 在实验设计 (DOE) 中采用该方法。其中,系数代表与所指定的高值和低值相关的响应的均值变化。
减去均值,然后除以标准差
此方法可同时集中和调整变量。每个系数均代表响应的预期变化(该响应在变量中给定了标准差变化)。
减去均值
此方法可集中变量。每个系数均代表响应的预期变化(该响应使用原始测量尺度,在变量中给定了一个单位变化)。当您减掉均值以后,常量将在所有预测变量处于其均值的情况下,估计均值响应。
除以标准差
此方法可调整变量。每个系数均代表响应的预期变化(该响应在变量中给定了一个标准差变化)。
减去指定值,然后除以另一个值
此方法的效应和解释取决于您所输入的值。

估计的 λ

当使用 Box-Cox 变换时,估计的 λ (lambda) 是生成正态分布的变换响应值的最优值。默认情况下,Minitab 使用取整的 lambda 值。

解释

Lambda 是 Minitab 用于变换响应数据的指数。例如,如果 lambda = -1,则所有响应值 (Y) 按以下方式变换:−Y-1 = −1/Y。如果 lambda 等于 0,这代表 Y 的自然对数,而不是 Y0 的自然对数。

λ 的 95% 置信区间

λ (lambda) 的置信区间是可能包含从中提取样本的整个总体实际 λ 值的值范围。

由于样本的随机性,来自总体的两个样本不可能生成相同的置信区间。但是如果随机取样多次,则所获得的特定百分比的置信区间会包含未知的总体参数。这些包含参数的置信区间的百分比是区间的置信水平。

解释

使用置信区间可评估样本的 lambda 估计值。

例如,当置信水平为 95% 时,包含总体 lambda 值的置信区间的置信度为 95%。置信区间有助于评估结果的实际意义。利用您的专业知识可以确定置信区间是否包含对您的情形有实际意义的值。如果区间因为太宽而无效,请考虑增加样本数量。

取整后的 λ

默认情况下,Minitab 将最优 λ (lambda) 值取整为最接近的半数,因为这些值相当于更为直观的变换。如果您希望使用最优值进行变换,请选择工具 > 选项 > 线性模型 > 结果显示

解释

以下是常用的 lambda 取整值以及它们变换响应变量的方式。
Lambda 变换
-2 −Y-2 = −1 / Y2
-1 −Y-1 = −1 / Y
-0.5 −Y-0.5 = −1 / (Y 的平方根)
0 对数 (Y)
0.5 Y0.5 = Y 的平方根
1 Y
2 Y2
使用此网站,即表示您同意对数据分析和个性化内容使用 Cookie。  请阅读我们的政策