拟合二元 Logistic 模型中模型汇总的方法和公式

请选择您所选的方法或公式。

偏差 R2

偏差 R2 表示响应变量中由模型解释的变异量。R2 越大,模型与数据拟合得越好。公式为:

表示法

说明
DE误差偏差
DT总偏差

调整的偏差 R2

调整的偏差 R2 可以说明模型中预测变量的数量,并且可用于比较具有不同预测变量数量的模型。公式为:

表示法

说明
R2偏差 R2
p回归自由度
Φ1,用于二项和 Poisson 模型
DT总偏差

尽管在计算调整的偏差 R2 时可能会产生负值,但 Minitab 将针对这些情况显示零。

Akaike 信息准则 (AIC)

使用此统计量比较不同模型。AIC 越小,模型与数据拟合得越好。

根据平均值参数化对数似然函数。函数的一般形式如下:

个体贡献的一般形式如下:

个体贡献的特定形式取决于模型。

模型 li
二项
Poisson

表示法

说明
p回归自由度
Lc当前模型的对数似然
yii 行的事件数
mii 行的试验数
i 行的估计均值响应
使用此网站,即表示您同意对数据分析和个性化内容使用 Cookie。  请阅读我们的政策