O nível de significância (indicado como α ou alfa) é o nível máximo aceitável de risco para rejeitar a hipótese nula quando ela é verdadeira (erro tipo I). Alfa também é interpretado como o poder do teste quando a hipótese nula (H0) for verdadeira. Em geral, você escolhe o nível de significância antes de analisar os dados. Por padrão, o nível de significância é 0,25.
Use o nível de significância para minimizar o valor do poder do teste quando a hipótese nula (H0) for verdadeira. Os valores mais elevados para o nível de significância dão mais poder ao teste, mas também aumentar a chance cometer um erro do tipo I, que está rejeitando a hipótese nula quando ela é verdadeira.
O desvio padrão é a medida mais comum da dispersão, ou quanto os dados variam em relação à média. A variação que é aleatória ou natural de um processo é frequentemente referida como ruído.
Esse valor representa a diferença entre as médias populacionais das observações pareadas.
O Minitab calcula a diferença mínima para a qual é possível alcançar o nível especificado de poder para cada tamanho amostral. Amostras maiores permitem que o teste para detecte diferenças menores. Você deseja detectar a menor diferença que tenha consequências práticas para sua aplicação.
Para investigar melhor a relação entre o tamanho amostral e a diferença um determinado poder, use a curva de poder.
O tamanho amostral é o número total de observações na amostra.
Use o tamanho amostral para estimar quantas observações que você precisa para obter um certo valor de poder para um teste de hipótese com uma diferença específica.
O Minitab calcula o tamanho que sua amostra deve ter para que um teste com o seu poder especificado detecte cada diferença especificada. Como os tamanhos amostrais são números inteiros, o poder real do teste pode ser um pouco maior do que o valor de poder que você especificar.
Se você aumentar o tamanho amostral, o poder do teste também aumentará. Você quer observações suficientes na sua amostra para alcançar o poder adequado. Porém, você não quer um tamanho amostral tão grande a ponto de perder tempo e dinheiro em amostragens desnecessárias ou detectar diferenças sem importância para serem estatisticamente significativas.
Para investigar melhor a relação entre o tamanho amostral e a diferença um determinado poder, use a curva de poder.
O poder de um teste de hipótese é a probabilidade de que o teste rejeite corretamente a hipótese nula. O poder de um teste de hipótese é afetado pelo tamanho amostral, a diferença, a variabilidade dos dados e o nível de significância do teste.
Para obter mais informações, vá para O que é potência?.
O Minitab calcula o poder do teste com base na diferença e tamanho amostral especificado. Em geral, um valor de poder de 0,9 é considerado adequado. Um valor de 0,9 indica que você tem uma probabilidade de 90% de detectar uma diferença entre as médias pareadas da população quando uma diferença realmente existe. Se um teste apresenta baixo poder, talvez não seja possível detectar a diferença e você conclua erroneamente que não existe nenhuma. Normalmente, quando o tamanho amostral é menor ou a diferença é menor, o teste tem menos poder para detectar uma diferença.
Se você inserir a diferença e um valor de poder para o teste, o Minitab calcula o tamanho que sua amostra deve ter. O Minitab também calcula o poder real do teste para aquele tamanho da amostral. Como os tamanhos amostrais são números inteiros, o poder real do teste pode ser um pouco maior do que o valor de poder que você especificar.
A curva de poder representa graficamente o poder do teste versus a diferença entre as médias pareadas.
Use a curva de poder para avaliar o tamanho amostral ou o poder adequado para o seu teste.
A curva de poder representa todas as combinações de poder e diferença para cada tamanho amostral, quando o nível de significância e o desvio padrão são mantidos constantes. Cada símbolo na curva da poder representa um valor calculado com base nos valores inseridos. Por exemplo, se você inserir um tamanho amostral e um valor de poder, o Minitab calcula a diferença correspondente e exibe o valor calculado no gráfico.
Examine os valores na curva para determinar a diferença entre as médias pareadas que pode ser detectada a um determinado valor de poder e tamanho amostral. Em geral, um valor de poder de 0,9 é considerado adequado. No entanto, alguns profissionais consideram o valor de poder de 0,8 como adequado. Se um teste de hipóteses tiver baixo poder, talvez não seja possível detectar uma diferença praticamente significativa. Se você aumentar o tamanho amostral, o poder do teste também aumentará. Você quer observações suficientes na sua amostra para alcançar o poder adequado. Porém, você não quer um tamanho amostral tão grande a ponto de perder tempo e dinheiro em amostragens desnecessárias ou detectar diferenças sem importância para serem estatisticamente significativas. Se você diminuir o tamanho da diferença que deseja detectar, o poder também diminuirá.
Neste gráfico, a curva de poder para um tamanho amostral de 10 mostra que o teste tem uma poder de 0,8 para uma diferença de 5. Para tamanhos amostrais de 20 e 50, a curva de poder mostra que o teste tem um poder muito próximo de 1 para uma diferença de 5. Como esses valores de poder são tão altos, se você coletar uma amostra de 20 ou maior, é possível que você desperdice tempo e dinheiro em amostragens desnecessárias.