A estatística de transmissão mede o efeito de um tratamento no próximo tratamento. Por exemplo, suponha que o tratamento de referência tenha um efeito forte e o tratamento de teste tenha um efeito fraco. Se o período de washout não for longo o suficiente, os efeitos residuais do tratamento de referência no Período 1 podem fazer com que os efeitos do tratamento de teste no Período 2 pareçam mais fortes do que realmente são.
Compare o valor de p para o efeito de transporte com o nível de significância (denotado como alfa ou α). Um α de 0,05 é comum. Se o valor de p for menor que α, o efeito de transporte é estatisticamente significativo. Nesse caso, os resultados do teste de equivalência podem estar viciados.
Efeito | EP | GL | Valor-T | Valor-p | IC 95% para equivalência | |
---|---|---|---|---|---|---|
Carryover | 0,45181 | 0,64988 | 15 | 0,69521 | 0,498 | (-0,93339; 1,8370) |
Tratamento | -0,32104 | 0,060641 | 15 | -5,2941 | 0,000 | (-0,45030; -0,19179) |
Período | -0,097708 | 0,060641 | 15 | -1,6112 | 0,128 | (-0,22696; 0,031546) |
Nestes resultados, o efeito de transferência estimado é 0,45181. No entanto, o valor-p é 0,498, que é maior que α (0,05). Portanto, o efeito de transmissão não é estatisticamente significativo.
Se o efeito de transporte ou o efeito de período for estatisticamente significativo, os resultados do teste de equivalência podem não ser confiáveis. Além disso, o efeito do tratamento pode ser confundido com o efeito carryover e / ou o efeito do período, tornando as estimativas incertas. Ao usar um experimento cruzado 2x2, você deve planejar cuidadosamente seu estudo para evitar efeitos transferidos e os efeitos do período antes de você coletar e analisar os dados.
A estatística de tratamento mede a diferença entre os efeitos do tratamento em teste e do tratamento de referência. Na maioria dos estudos, o efeito do tratamento é o efeito de interesse.
Compare o valor de p para o efeito de tratamento com o nível de significância (denotado como alfa ou α). Um α de 0,05 é comum. Se o valor de p for menor que α, o efeito de tratamento é estatisticamente significativo.
Efeito | EP | GL | Valor-T | Valor-p | IC 95% para equivalência | |
---|---|---|---|---|---|---|
Carryover | 0,45181 | 0,64988 | 15 | 0,69521 | 0,498 | (-0,93339; 1,8370) |
Tratamento | -0,32104 | 0,060641 | 15 | -5,2941 | 0,000 | (-0,45030; -0,19179) |
Período | -0,097708 | 0,060641 | 15 | -1,6112 | 0,128 | (-0,22696; 0,031546) |
Nestes resultados, o efeito estimado do tratamento é −0,32104. O valor de p para o efeito do tratamento é 0,000, o que é menos do que 0,05. Assim, o efeito do tratamento é estatisticamente significativo ao nível 0,05. O efeito de tratamento significativo indica que um tratamento tem um efeito melhor do que o outro. No entanto, um efeito significativo do tratamento não significa que você não pode afirmar a equivalência. A diferença entre as médias dos tratamentos pode ainda estar dentro de seus limites de equivalência.
Se o efeito de transporte ou o efeito de período for estatisticamente significativo, os resultados do teste de equivalência podem não ser confiáveis. Além disso, o efeito do tratamento pode ser confundido com o efeito carryover e / ou o efeito do período, tornando as estimativas incertas. Ao usar um experimento cruzado 2x2, você deve planejar cuidadosamente seu estudo para evitar efeitos transferidos e os efeitos do período antes de você coletar e analisar os dados.
A estatística de período mede a diferença entre a resposta no Período 1 e no Período 2. Por exemplo, se você medir a pressão arterial como resposta, poderá descobrir que a resposta diminui durante o Período 2 simplesmente porque os participantes estão mais acostumados ao ambiente de teste e procedimentos. A aclimatação dos participantes poderia resultar em um efeito de período.
Compare o valor de p para o efeito de período com o nível de significância (denotado como alfa ou α). Um α de 0,05 é comum. Se o valor de p for menor que α, o efeito de período é estatisticamente significativo. Nesse caso, os resultados do teste de equivalência podem estar viciados.
Efeito | EP | GL | Valor-T | Valor-p | IC 95% para equivalência | |
---|---|---|---|---|---|---|
Carryover | 0,45181 | 0,64988 | 15 | 0,69521 | 0,498 | (-0,93339; 1,8370) |
Tratamento | -0,32104 | 0,060641 | 15 | -5,2941 | 0,000 | (-0,45030; -0,19179) |
Período | -0,097708 | 0,060641 | 15 | -1,6112 | 0,128 | (-0,22696; 0,031546) |
Nestes resultados, o efeito do período estimado é de -0,097708. No entanto, o valor-p é 0,128, que é maior que alfa (0,05). Portanto, o efeito do período não é estatisticamente significativo.
Se o efeito de transporte ou o efeito de período for estatisticamente significativo, os resultados do teste de equivalência podem não ser confiáveis. Além disso, o efeito do tratamento pode ser confundido com o efeito carryover e / ou o efeito do período, tornando as estimativas incertas. Ao usar um experimento cruzado 2x2, você deve planejar cuidadosamente seu estudo para evitar efeitos transferidos e os efeitos do período antes de você coletar e analisar os dados.
O erro padrão da média de cada efeito estima a variabilidade entre o efeito da amostra que você obteria se tivesse extraído repetidas amostras da mesma população.
Use o erro padrão do efeito para avaliar a precisão da estimativa de cada efeito em relação à variabilidade de amostragem aleatória. Geralmente, quanto menor o erro padrão, mais precisa é a estimativa do efeito e mais estreito é o seu intervalo de confiança.
Dividir cada efeito pelo seu erro padrão calcula um valor de t para o efeito. Quanto mais baixo é o erro padrão em relação ao tamanho do efeito, maior é o valor absoluto do valor de t. Se o valor de p associado a este valor de t for menor do que o seu nível de alfa, você conclui que o efeito é estatisticamente significativo. Para obter mais informações, consulte a seção sobre o valor de p para os efeitos.
Os graus de liberdade (DF) indicam a quantidade de informações que estão disponíveis em seus dados para estimar os valores de parâmetros desconhecidos e calcular a variabilidade dessas estimativas.
O Minitab usa os graus de liberdade para calcular a estatística de teste. Os graus de liberdade são afetados pelo tamanho da amostra. Aumentar o tamanho da amostra fornece mais informações sobre a população, que aumenta os graus de liberdade.
O valor de T é um teste estatístico que mede a magnitude do efeito em relação à variabilidade das amostras (erro padrão).
É possível usar um valor de t para determinar se a hipótese nula deve ser rejeitada. No entanto, a maioria das pessoas utiliza o valor de p ou o intervalo de confiança, porque eles são mais fáceis de serem interpretados.
A divisão de cada efeito por seu erro padrão calcula um valor de t para o efeito. Quanto menor o tamanho do erro padrão em relação ao tamanho do efeito, maior o valor absoluto do valor t, e mais forte a prova contra a hipótese nula.
O valor de t para cada efeito é utilizado para calcular o seu valor de p correspondente. Se o valor de p associado a este valor de t for menor do que o seu nível de significância, você conclui que o efeito é estatisticamente significativo. Para obter mais informações, consulte a seção sobre o valor de p para os efeitos.
O valor-p é uma probabilidade que mede a evidência contra a hipótese nula. As probabilidades inferiores fornecem evidências mais fortes contra a hipótese nula.
Para um teste de equivalência para um experimento cruzado 2x2, o Minitab calcula os valores-p para o efeito transferido, o efeito do período e o efeito do tratamento.
Use o valor-p para cada efeito para determinar se o efeito é estatisticamente significativo. Compare cada valor-p com o nível de significância (também denotado como alpha ou α). Normalmente, um α de 0,05 funciona bem.
Se o efeito de transporte ou o efeito de período for estatisticamente significativo, os resultados do teste de equivalência podem não ser confiáveis. O efeito do tratamento pode ser confundido com o efeito do período e/ou o efeito transferido. Ao usar um experimento cruzado 2x2, você deve planejar cuidadosamente seu estudo para evitar efeitos transferidos e os efeitos do período antes de você coletar e analisar os dados.
Se o efeito transferido e o efeito do período são forem estatisticamente significativos, determine se o efeito do tratamento é estatisticamente significativo. Normalmente o efeito do tratamento é o efeito de interesse.
Efeito | EP | GL | Valor-T | Valor-p | IC 95% para equivalência | |
---|---|---|---|---|---|---|
Carryover | 0,45181 | 0,64988 | 15 | 0,69521 | 0,498 | (-0,93339; 1,8370) |
Tratamento | -0,32104 | 0,060641 | 15 | -5,2941 | 0,000 | (-0,45030; -0,19179) |
Período | -0,097708 | 0,060641 | 15 | -1,6112 | 0,128 | (-0,22696; 0,031546) |
Nesses resultados, os valores-p para o efeito transferido e o efeito do período são ambos maiores que 0,05, o nível de significância. Portanto, esses efeitos não são estatisticamente significativos. O valor-p do efeito de tratamento é menor que 0,05, o que indica que a diferença entre os tratamentos é estatisticamente significativa.
Um efeito do tratamento que é estatisticamente significativo, não indica que você não pode afirmar a equivalência. A diferença entre as médias dos tratamentos pode ainda estar dentro de seus limites de equivalência. Use os resultados no gráfico de equivalência para determinar se você pode afirmar a equivalência. Para obter mais informações, acesse Para gráficos: Teste de equivalência para experimento cruzado 2x2 e clique em "Gráfico de equivalência".
O intervalo de confiança de equivalência fornece uma gama de valores prováveis para cada efeito, com base em seus dados de amostra.
Para cada efeito, utilize o intervalo de confiança e o valor de p para determinar se o efeito é estatisticamente significativo.
Efeito | EP | GL | Valor-T | Valor-p | IC 95% para equivalência | |
---|---|---|---|---|---|---|
Carryover | 0,45181 | 0,64988 | 15 | 0,69521 | 0,498 | (-0,93339; 1,8370) |
Tratamento | -0,32104 | 0,060641 | 15 | -5,2941 | 0,000 | (-0,45030; -0,19179) |
Período | -0,097708 | 0,060641 | 15 | -1,6112 | 0,128 | (-0,22696; 0,031546) |
Nestes resultados, o intervalo de confiança de 95% para o efeito de transmissão é (-0,93339 e 1,8370) e o intervalo de confiança de 95% para o efeito do período é -0,22696, 0,031546). No entanto, nenhum destes efeitos é estatisticamente significativo (p > 0,05). O intervalo de confiança de 95% para o efeito de tratamento é (-0,45030, -0,19179). O efeito de tratamento estatisticamente significativo (p = 0,000).
Se o efeito de transporte ou o efeito de período for estatisticamente significativo, os resultados do teste de equivalência podem não ser confiáveis. Além disso, o efeito do tratamento pode ser confundido com o efeito carryover e / ou o efeito do período, tornando as estimativas incertas. Ao usar um experimento cruzado 2x2, você deve planejar cuidadosamente seu estudo para evitar efeitos transferidos e os efeitos do período antes de você coletar e analisar os dados.