A função de autocorrelação é uma medida da correlação entre as observações de uma série temporal que são separadas por k unidades de tempo (yt e yt–k).
Use a função de autocorrelação e as funções de autocorrelação parcial em conjunto para identificar modelos ARIMA. Examine os picos em cada lag para determinar se eles são significativos. Um pico significativo se estenderá para além dos limites de significância, o que indica que a correlação para esse lag não é igual a zero.
Os dados devem estar estacionários antes de você interpretar o gráfico de autocorrelação. Uma série temporal estacionária tem funções de média, variância e autocorrelação que são essencialmente constantes ao longo do tempo. Para obter mais informações, acesse Considerações de dados para a função de autocorrelação.
Padrão | O que o padrão indica | Exemplo |
---|---|---|
Um grande pico no lag 1 que diminui depois de alguns lags. | Um termo auto-regressivo nos dados. Use a função de autocorrelação parcial para determinar a ordem do termo auto-regressivo. | |
Um grande pico no lag 1 seguido por uma onda decrescente que alterna entre correlações positivas e negativas. | Um termo auto-regressivo de ordem superior nos dados. Use a função de autocorrelação parcial para determinar a ordem do termo auto-regressivo. | |
Correlações significativas no primeiro ou segundo lag, seguidas por correlações que não são significativas. | Um termo de média móvel nos dados. O número de correlações significativas indica a ordem do termo da média móvel. |