Um coeficiente de regressão descreve o tamanho e a direção da relação entre um preditor e variável de resposta. Os coeficientes são os números pelos quais os valores do termo são multiplicados em uma equação de regressão.
Use o coeficiente para determinar se uma mudança na variável preditora pode tornar o evento mais ou menos provável. Geralmente, os coeficientes positivos tornam o evento mais provável e os coeficientes negativos tornam o evento menos provável. Um coeficiente estimado próximo de 0 sugere que o efeito do preditor é pequeno. Para um preditor categórico, a interpretação depende da codificação.
O erro padrão do coeficiente estima a variabilidade entre a estimativa do coeficiente que seria obtida caso fossem extraídas amostras da mesma população por vezes seguidas. O cálculo pressupõe que o tamanho da amostra e os coeficientes para estimativa permaneceriam os mesmos caso fossem extraídas repetidas amostras.
Use o erro padrão do coeficiente para medir a precisão da estimativa do coeficiente. Quanto menor o erro padrão, mais precisa é a estimativa.
Esses intervalos de confiança (IC) são intervalos de valores que provavelmente contêm o o valor verdadeiro do coeficiente para cada termo no modelo. O cálculo dos intervalos de confiança usa a distribuição normal. O intervalo de confiança é exato se o tamanho da amostra é grande o suficiente de forma que a distribuição do coeficiente da amostra siga uma distribuição normal.
Como as amostras são aleatórias, é improvável que duas amostras de uma população produzam intervalos de confiança idênticos. No entanto, se você extrair muitas amostras aleatórias, uma determinada porcentagem dos intervalos de confiança resultantes conterá o parâmetro populacional desconhecido. A porcentagem destes intervalos de confiança que contém o parâmetro é o nível de confiança do intervalo.
Use o intervalo de confiança para avaliar a estimativa do coeficiente de população para cada termo no modelo.
Por exemplo, com um nível de confiança de 95%, é possível ter 95% de certeza de que o intervalo de confiança contém o valor do coeficiente para a população. O intervalo de confiança ajuda a avaliar a significância prática de seus resultados. Use seu conhecimento especializado para determinar se o intervalo de confiança inclui valores que tenham significância prática para a sua situação. Se o intervalo for muito amplo para ser útil, pense em aumentar o tamanho da amostra.
O valor-z é uma estatística de teste que mede a razão entre o coeficiente e seu erro padrão.
O Minitab usa o valor-z para calcular o valor-p, que pode ser usado para a tomada de uma decisão sobre a significância estatística dos termos e do modelo. O teste de Wald é exato quando o tamanho da amostra é grande o bastante de forma que a distribuição dos coeficientes da amostra segue uma distribuição normal.
Uma razão grande o bastante indica que o coeficiente de estimativa é suficientemente grande e preciso para ser significativamente diferente de zero. Por outro lado, uma razão pequena indica que o coeficiente da estimativa é pequeno ou impreciso demais para proporcionar a certeza de que o termo tem um efeito sobre a resposta.
O valor-p é uma probabilidade que mede a evidência contra a hipótese nula. As probabilidades inferiores fornecem evidências mais fortes contra a hipótese nula.