Os graus de liberdade (DF) totais são a quantidade de informações em seus dados. A análise usa essas informações para estimar os valores dos parâmetros da população desconhecidos. Os DF totais são determinados pelo número de observações em sua amostra. Os DF de um termo mostram quanta informação aquele termo usa. Aumentar o tamanho amostral fornece mais informações sobre a população, o que aumenta os DF totais. Aumentar o número de termos em seu modelo usa mais informações, o que diminui os DF disponíveis para estimar a variabilidade das estimativas de parâmetros.
Para um estudo de estabilidade com fatores fixos, a tabela ANOVA inclui os seguintes graus de liberdade: tempo, lote e Tempo*Lote.
As somas dos quadrados sequenciais são medidas da variação para os diferentes componentes do modelo. Diferente das somas dos quadrados ajustados, a soma sequencial dos quadrados depende da ordem em que os termos são inseridos no modelo. Na tabela Análise de Variância, o Minitab separa as somas dos quadrados sequenciais em diferentes componentes que descrevem a variação devida a diferentes fontes.
Na tabela Seleção do Modelo, o Minitab usa as somas sequenciais dos quadrados para calcular o valor-p para um termo. Em geral, você interpreta os valores-p em vez dos somas dos quadrados.
Os quadrados médios sequenciais medem o quanto a variação de um termo ou de um modelo explica. Os quadrados médios sequenciais dependem da ordem em que os termos são inseridos no modelo. Ao contrário das somas dos quadrados, os quadrados médios sequenciais consideram os graus de liberdade.
O quadrado médio do erro sequencial (também chamado MSE ou s2) é a variância em torno dos valores ajustados.
O Minitab usa os quadrados médios sequenciais para calcular o valor de p para um termo. O Minitab também usa os quadrados médios sequenciais para calcular a estatística R2 ajustada. Normalmente, você interpreta os valores de p e a estatística R2 ajustada em vez dos quadrados médios sequenciais.
Aparece um Valor de F para cada termo na análise da tabela de variância. O valor-f é a estatística de teste usado para determinar se o termo está associado com a resposta.
O Minitab usa a o valor de F para calcular o valor de p, que pode ser usado para a tomada de uma decisão sobre a significância estatística dos termos e do modelo. O valor-p é uma probabilidade que mede a evidência contra a hipótese nula. As probabilidades inferiores fornecem evidências mais fortes contra a hipótese nula.
Um valor de F grande o bastante indica que o termo ou modelo é significativo.
Se você quiser usar o valor-f para determinar se deve rejeitar a hipótese nula, compare o valor-f com o seu valor crítico. É possível calcular o valor crítico no Minitab ou encontrar o valor crítico de uma tabela distribuição F na maioria dos livros de estatísticas. Para obter mais informações sobre como usar o Minitab para calcular o valor crítico, acesse Usando a função de distribuição acumulada inversa (ICDF) e clique em "Usar o ICDF para calcular valores críticos".
O valor-p é uma probabilidade que mede a evidência contra a hipótese nula. As probabilidades inferiores fornecem evidências mais fortes contra a hipótese nula.
O valor-p é uma probabilidade que mede a evidência contra a hipótese nula. As probabilidades inferiores fornecem evidências mais fortes contra a hipótese nula.