O R2 da desviância geralmente é considerado a proporção total da desviância na variável resposta que explica o modelo.
Normalmente, quanto maior o R2 de deviance, melhor o modelo ajusta os dados. O R2 de deviance está sempre entre 0 e 100%.
O R2 da desviância sempre aumenta quando são adicionados termos a um modelo. Por exemplo, o melhor modelo com 5 termos sempre terá um R2 que pelo menos tão alto quanto o melhor modelo com 4 termos. Portanto, R2 da desviância é mais útil quando for comparado a modelos do mesmo tamanho.
A estatística de qualidade do ajuste é apenas uma medida do grau em que o modelo ajusta os dados (se ajusta bem ou mal). Mesmo quando um modelo tem um valor desejável, você deve verificar os gráficos de resíduos e testes de qualidade do ajuste para avaliar se um modelo ajusta bem os dados.
Você pode usar um gráfico de linhas ajustado para ilustrar graficamente valores de R2 da desviância. O primeiro gráfico ilustra um modelo que explica aproximadamente 96% da desviância na resposta. O segundo gráfico ilustra um modelo que explica cerca de 60% da desviância na resposta. Quanto mais desviância um modelo explica, mais próximos os pontos de dados caem na curva. Teoricamente, se um modelo pudesse explicar 100% da desviância, os valores ajustados seriam sempre iguais aos valores observados e todos os pontos de dados cairiam na curva.
O arranjo dos dados afeta o valor de R2 da desviância. O R2 da desviância normalmente é mais alto para dados com múltiplos ensaios por linha que para dados com um único ensaio por linha. Os valores de R2 da desviância só são comparáveis entre os modelos que usam o mesmo formato de dados. Para obter mais informações, acesse Como os formatos de dados afetam a qualidade de ajuste na regressão logística binária.
O R2 de deviance ajustado representa a porcentagem de desvio na resposta que é explicada pelo modelo, ajustada para o número de preditores do modelo em relação ao número de observações.
Use o R2 do deviance ajustado para comparar modelos que têm número de termos diferentes. O R2 de deviance sempre aumenta quando você adiciona um termo ao modelo. O valor de R2 da desviância ajustado incorpora o número de termos no modelo para ajudá-lo a escolher o modelo correto.
Passo | % Batata | Taxa de resfriamento | Temp de cozimento | desviância R2 | desviância ajustada R2 | Valor-p |
---|---|---|---|---|---|---|
1 | X | 52% | 51% | 0,000 | ||
0 | X | X | 63% | 62% | 0,000 | |
3 | X | X | X | 65% | 62% | 0,000 |
A primeira etapa produz um modelo de regressão estatisticamente significativo. A segunda etapa, que adiciona uma taxa de resfriamento ao modelo, aumenta o R2 da desviância ajustado, que indica que a taxa de resfriamento aprimora o modelo. A terceira etapa, que adiciona temperatura de cozimento ao modelo, aumenta o R2 da desviância, mas não o R2 da desviância ajustado. Esses resultados indicam que a temperatura de cozimento não aprimoram o modelo. Com base nesses resultados, você considera remover a temperatura de cozimento do modelo.
O arranjo dos dados afeta o valor de R2 da desviância ajustado. Para os mesmos dados, o R2 da desviância ajustado normalmente é mais alto para dados com múltiplos ensaios por linha que para dados com um único ensaio por linha. Use o R2 da desviância ajustado somente para comparar o ajuste dos modelos que têm o mesmo formato de dados. Para obter mais informações, acesse Como os formatos de dados afetam a qualidade de ajuste na regressão logística binária.
Use o R2 da desviância de teste para determinar se seu modelo se ajusta bem aos dados novos. Os modelos que apresentam valores mais altos de R2 da desviância de teste tendem a ter melhor desempenho com dados novos. Você pode usar o R2 da desviância de teste para comparar o desempenho de diferentes modelos.
Um R2 da desviância de teste substancialmente menor que o R2 da desviância pode indicar que o modelo está superajustado. Um modelo superajustado ocorre quando são adicionados termos para efeitos que não são importantes na população. O modelo se adapta aos dados de treinamento e, portanto, pode não ser útil para fazer predições sobre a população.
Por exemplo, um analista de uma empresa de consultoria financeira desenvolve um modelo para predizer condições futuras do mercado. O modelo parece promissor porque tem um R2 de 87%. No entanto, o R2 da desviância de teste é de 52%, o que indica que o modelo pode estar superajustado.
Um valor alto de R2 da desviância de teste não indica, por si só, que o modelo atende aos pressupostos do modelo. Você deve observar os gráficos de resíduos para verificar os pressupostos.
Costuma-se considerar o R2 da desviância de K dobras como a proporção do desvio total na variável resposta dos dados de validação que o modelo explica.
Use o R2 da desviância de K dobras para determinar se seu modelo ajusta bem os novos dados. Os modelos que apresentam valores mais altos de R2 da desviância de K dobras tendem a ter melhor desempenho com dados novos. Você pode usar o R2 da desviância de de K dobras para comparar o desempenho de diferentes modelos.
Um R2 da desviância de K dobras que é substancialmente menor que o R2 da desviância pode indicar que o modelo está sobreajustado. Um modelo sobreajustado ocorre quando você adiciona termos para efeitos que não são importantes na população. O modelo se adapta ao conjunto de dados de treinamento e, portanto, pode não ser útil para fazer predições sobre a população.
Por exemplo, um analista de uma empresa de consultoria financeira desenvolve um modelo para predizer condições futuras do mercado. O modelo parece promissor porque tem R2 da desviância de 87%. No entanto, o R2 da desviância de K dobras é de 52%, o que indica que o modelo pode estar sobreajustado.
Um valor alto de R2 da desviância de K dobras não indica, por si só, que o modelo atende aos pressupostos do modelo. Você deve observar os gráficos de resíduos para verificar os pressupostos.
O Critério de Informação de Akaike (AIC), o Critério de Informação de Akaike Corrigido (AICc) e o Critério de Informação Bayesiano (BIC) são medidas da qualidade relativa de um modelo que consideram o ajuste e a quantidade de termos no modelo.
A curva ROC traça a taxa de positivos verdadeiros (TPR), também conhecida como poder, no eixo Y, e a taxa de falsos positivos (FPR), também conhecida como erro tipo 1, no eixo x. Os diferentes pontos representam diferentes valores de limite para a probabilidade de que um caso seja um evento. A área sob uma curva ROC indica se o modelo binário é um bom classificador.
Quando a análise usa um método de validação Método, o Minitab calcula duas curvas ROC, uma para os dados de treinamento e outra para a validação do teste. Se o método de validação for um conjunto de dados de teste, o Minitab exibirá a área de teste sob a curva ROC. Se o método de validação for de validação cruzada, o Minitab exibirá a área com k dobras sob a curva ROC. Por exemplo, para validação cruzada com 10 dobras, o Minitab exibe a área de 10 dobras sob a curva ROC.
A área sob os valores da curva ROC variam tipicamente de 0,5 a 1. Quando o modelo binário pode separar perfeitamente as classes, então a área sob a curva é 1. Quando o modelo binário não pode separar as classes melhor do que uma atribuição aleatória, então a área sob a curva é de 0,5.
Quando a análise usar um método de validação, use a área sob a curva ROC para determinar se o modelo pode predizer adequadamente os valores de resposta para novas observações, ou sumarizar adequadamente as relações entre a resposta e as variáveis preditoras. Os resultados de treinamento geralmente são mais ideais do que os reais e servem apenas como referência.
Se a área sob a curva ROC para o método de validação for substancialmente menor do que a área sob a curva ROC, a diferença pode indicar que o modelo está sobreajustado. Um modelo sobreajustado ocorre quando você inclui termos que não são importantes na população. O modelo se adapta aos dados de treinamento e, portanto, pode não ser útil para fazer predições sobre a população.
R2 Deviance | R2 (Aj.) Deviance | AIC | AICc | BIC | Área sob a curva ROC | R2 Deviance 10-dobras | Área de 10-dobras sob a curva ROC |
---|---|---|---|---|---|---|---|
50,86% | 42,43% | 276,02 | 286,11 | 409,48 | 0,9282 | 17,29% | 0,8519 |
Esses resultados mostram a tabela de sumário do modelo para um modelo sobreajustado. Ao considerar se o modelo ajusta bem os novos dados, vemos que a área sob a curva ROC para os dados de treinamento dá um valor mais otimista do que a área com 10 dobras sob a curva ROC.