Gráficos de resíduos para Análise de experimento de filtragem definitivo

Gráficos de probabilidade normal de resíduos

Um gráfico de probabilidade normal dos resíduos mostra os resíduos versus seus valores esperados quando a distribuição é normal.

Interpretação

Use o gráfico de probabilidade normal de resíduos para verificar a pressuposição de que os resíduos são distribuídos normalmente. O gráfico de probabilidade normal dos resíduos deve seguir aproximadamente uma linha reta.

Os seguintes padrões violam o pressuposto de que os resíduos são normalmente distribuídos.

A curva S sugere uma distribuição com caudas longas.

A curva S invertida sugere uma distribuição com caudas curtas.

A curva descendente implica uma distribuição assimétrica à direita.

Alguns pontos situados longe da linha sugerem uma distribuição com outliers.

Se você vir um padrão não-normal, use os outros gráficos de resíduos para verificar outros problemas com o modelo, como termos faltantes ou um efeito de ordem de tempo. Se os resíduos não seguirem uma distribuição normal, os intervalos de confiança e os valores-p podem ser inexatos.

Resíduos versus valores ajustados

O gráfico de resíduos versus ajustes representa graficamente os resíduos no eixo Y e os valores ajustados no eixo X.

Interpretação

Use o gráfico de resíduos versus ajustes para verificar a pressuposição de que os resíduos são aleatoriamente distribuídos e têm variância constante. De maneira ideal, os pontos devem cair aleatoriamente em ambos os lados de 0, sem padrões reconhecíveis nos pontos.

Os padrões na tabela a seguir podem indicar que o modelo não atende às suposições de modelo.
Padrão O que o padrão pode indicar
Dispersão grande ou irregular de resíduos entre valores ajustados Variância não constante
Curvilíneo Um termo de ordem mais alta ausente
Um ponto que está distante de zero Um outlier
Um ponto que é distante dos outros pontos na direção x Um ponto influente
Os gráficos a seguir mostram um outlier e uma violação do pressuposto de que a variância dos resíduos é constante.
Gráfico com outlier

Um dos pontos é muito maior do que todos os outros pontos. Portanto, a questão é um outlier. Se houver muitos outliers, o modelo pode não ser aceitável. Você deve tentar identificar a causa de todos os outliers. Corrija os erros de entrada de dados ou de medição. Considere a remoção de valores de dados que estejam associados a eventos anormais que ocorrem somente uma vez (causas especiais). Em seguida, repita a análise.

Gráfico com variância não constante

A variância dos resíduos aumenta com os valores ajustados. Observe que, como o valor dos ajustes aumenta, a dispersão entre os resíduos se torna mais ampla. Este padrão indica que as variâncias dos resíduos são desiguais (não constante).

Se você identificar quaisquer padrões ou outliers no gráfico de resíduos versus o gráfico de ajustes, considere as seguintes soluções:
Problema Solução possível
Variância não constante Considere usar uma transformação de Box-Cox da variável resposta ou pesos..
Um outlier ou um ponto influente
  1. Verifique se a observação não é um erro de medição ou erro de entrada de dados.
  2. Considere fazer a análise sem esta observação para determinar como ela impacta seus resultados.

Resíduos x ordem

O gráfico de resíduos versus ordem mostra os resíduos na ordem em que os dados foram coletados.

Interpretação

Use o gráfico de resíduos versus ordem para verificar o pressuposto de que os resíduos são independentes um do outro. Resíduos independentes não mostram tendências nem padrões quando exibidos em ordem temporal. Os padrões nos pontos podem indicar que os resíduos próximos uns dos outros podem ser correlacionados e, portanto, não são independentes. De maneira ideal, os resíduos no gráfico devem cair aleatoriamente em torno da linha central:
Se você vir um padrão, investigue a causa. Os seguintes tipos de padrões podem indicar que os resíduos são dependentes.
Tendência
Turno
Ciclo

Resíduos versus variáveis

O gráfico de resíduos versus variáveis apresenta os resíduos comparados com outras variáveis. A variável já pode estar incluída em seu modelo. Ou, a variável pode não estar no modelo, mas você suspeita que afeta a resposta.

Interpretação

Se você observar um padrão não aleatória nos resíduos, isso indica que a variável afeta a resposta de uma forma sistemática. Considere a inclusão desta variável em uma análise.