Especificar as opções para Análise de resposta binária para filtragem de experimentos definitiva

Estat > DOE (Planejamento de Experimento) > Filtragem > Análise de resposta binária > Opções

Especifique as opções a serem usadas para analisar sua filtragem de experimento.

Pesos

Em Pesos, insira uma coluna numérica de pesos para realizar a regressão ponderada. Os pesos devem ser maiores que ou iguais a zero. A coluna dos pesos deve ter o mesmo número de linhas que a coluna das respostas. Para obter mais informações sobre a determinação do peso apropriado, vá para Regressão ponderada.

Nível de confiança de todos os intervalos

Insira o nível de confiança dos intervalos de confiança dos coeficientes e os valores ajustados. Se você usar a função de ligação de logit, este nível de confiança também é o nível de confiança dos intervalos de confiança para as razões de chances.

Em geral, um nível de confiança de 95% funciona bem. Um nível de confiança de 95% indica que, se você extrair 100 amostras aleatórias da população, os intervalos de confiança para aproximadamente 95 das amostras conterão o parâmetro que o intervalo estima. Para um determinado conjunto de dados, um nível de confiança mais baixo produz um intervalo de confiança mais estreito e um nível de confiança mais alto produz um intervalo de confiança mais amplo.

Observação

Para exibir os intervalos de confiança para os coeficientes e os valores ajustados, você deve ir para a Resultados caixa de subdiálogo, e a partir de Exibição de resultados, selecione Tabelas expandidas.

Tipo de intervalo de confiança

Você pode selecionar um intervalo bilateral ou um limite unilateral. Para o mesmo nível de confiança, um limite está mais perto da estimativa do ponto do que do intervalo. O limite superior não fornece um valor inferior provável. O limite inferior não fornece um valor superior provável.
Bilateral
Use um intervalo de confiança bilateral para estimar os valores de probabilidade inferior e superior para a probabilidade do evento.
Limite inferior
Use um limite de confiança inferior para estimar um valor de probabilidade inferior para a probabilidade do evento.
Limite superior
Use um limite de confiança superior para estimar um valor de probabilidade inferior para a probabilidade do evento.

Resíduos para diagnósticos

Os resíduos deviance e de Pearson ajudam a identificar padrões nos gráficos de resíduos e outliers. As observações que são insuficientemente ajustadas pelo modelo têm resíduos deviance e de Pearson altos. O Minitab calcula os valores de resíduos para cada padrão de fator/covariável distinto.
  • Desviância: Os resíduos deviance são uma medida de quão bem o modelo prediz a observação. Os resíduos deviance são frequentemente preferidos para uma regressão logística que usa a função de ligação logit porque a distribuição dos resíduos é mais parecido com a distribuição dos resíduos de modelos de mínimos quadrados. A função de ligação logit é a função de ligação mais comum.
  • Pearson: Os resíduos de Pearson também são uma medida de quão bem o modelo prediz a observação. Uma abordagem comum para identificação de outliers é representar os resíduos de Pearson pela ordem das observações na worksheet.

Teste para a tabela ANOVA

Selecione o teste para a tabela ANOVA.
  • Teste de Wald: o teste de Wald padrão funciona bem na maioria dos casos.
  • Teste da razão de verossimilhança: use esta opção se preferir o teste da razão de verossimilhança.
Tipo de Desviância
Selecione uma deviance para o cálculo dos valores de qui-quadrado e os valores-p. É mais comum usar a deviance ajustada. Use a desviância sequencial para determinar o significado de termos pela ordem em que eles entram no modelo.
  • Ajustado (Tipo III): mede a redução na desviância para cada termo relativo a um modelo que contém todos os termos restantes.
  • Sequencial (Tipo I): mede a redução na desviância quando um termo é adicionado a um modelo que contém somente os termos antes dele.

Número de grupos para o teste Hosmer-Lemeshow

Insira o número de grupos para o teste Hosmer-Lemeshow. Se você deixar este valor em branco, o Minitab tenta criar 10 grupos de tamanho igual. Dez grupos funcionam bem para a maioria dos conjuntos de dados.

O teste Hosmer-Lemeshow avalia o ajuste do modelo comparando as frequências observadas e esperadas. O teste divide os dados em grupos por suas probabilidades estimadas de menor para maior, depois realiza um teste Qui-quadrado para determinar se as frequências observadas e esperadas são significativamente diferentes. Se o número de padrões distintos de fatores/covariáveis for pequeno ou grande, você deve mudar o número de grupos. Por exemplo, você pode usar menos grupos para aumentar os valores esperados dentro dos grupos. Alternativamente, você pode usar mais grupos para ver maiores detalhes na comparação dos valores observados e esperados. Hosmer and Lemeshow sugere o uso de um mínimo de 6 grupos. 1.

Tabela de médias

Você pode exibir as médias para os efeitos principais, os efeitos principais e interações com duas vias ou todos os efeitos principais e interações no modelo na saída. Como alternativa, você pode exibir as médias para um subconjunto destes termos ou nenhum termo. Os termos ao quadrado do modelo afetam as médias ajustadas dos efeitos principais e interações.

Se você selecionar Termos especificados, use os botões de seta para mover os termos de uma lista para a outra. Termos disponíveis mostra todos os termos para os quais as médias podem ser exibidas. O Minitab exibe as médias para os termos em Termos selecionados. Selecione um ou mais termos em uma das listas, clique em um botão de seta. As setas duplas movem todos os termos que estão em uma lista para a outra. Também é possível mover um termo clicando duas vezes nele. Se o efeito principal ou interação que você esperava ver na lista não aparecer, é necessário adicioná-lo ao modelo.

1 D.W. Hosmer and S. Lemeshow (2000). Applied Logistic Regression. 2nd ed. John Wiley & Sons, Inc.